Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the model and tokenizer from Hugging Face Hub
|
6 |
+
model_name = "vai0511/ai-content-classifier"
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Define function for classification
|
11 |
+
def classify_text(text):
|
12 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
13 |
+
with torch.no_grad():
|
14 |
+
outputs = model(**inputs)
|
15 |
+
|
16 |
+
logits = outputs.logits
|
17 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
18 |
+
|
19 |
+
labels = {0: "Human-Written", 1: "AI-Generated", 2: "Paraphrased"}
|
20 |
+
return labels[predicted_class]
|
21 |
+
|
22 |
+
# Gradio Interface
|
23 |
+
iface = gr.Interface(
|
24 |
+
fn=classify_text,
|
25 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter your text here..."),
|
26 |
+
outputs="text",
|
27 |
+
title="AI-Driven Content Source Identification",
|
28 |
+
description="Detect whether the given text is human-written, AI-generated, or paraphrased."
|
29 |
+
)
|
30 |
+
|
31 |
+
iface.launch()
|