File size: 4,230 Bytes
31607dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
import cv2


class ImageClassifier:
    def __init__(self):
        self.model = None

    def preprocess_image(self, image):
        # Resize the image to (32, 32)
        resized_image = cv2.resize(image, (32, 32))

        # # Convert the image to grayscale
        # gray_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY)

        # # # Normalize the pixel values between 0 and 1
        # normalized_image = gray_image.astype("float32") / 255.0

        # # # Transpose the dimensions to match the model's input shape
        # transposed_image = np.transpose(normalized_image, (1, 2, 0))

        # # # Expand dimensions to match model input shape (add batch dimension)
        # img_array = np.expand_dims(transposed_image, axis=0)
        return resized_image

    def load_dataset(self):
        # Set up the dataset
        (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()

        # Normalize pixel values between 0 and 1
        x_train = x_train.astype("float32") / 255.0
        x_test = x_test.astype("float32") / 255.0

        return (x_train, y_train), (x_test, y_test)

    # def build_model(self, x_train):
    #     # Define the model architecture
    #     model = keras.Sequential([
    #         # keras.Input(shape=x_train.shape[1]),
    #         layers.Conv2D(32, kernel_size=(3, 3), activation="relu", padding='same'),
    #         layers.MaxPooling2D(pool_size=(2, 2)),
    #         layers.Conv2D(64, kernel_size=(3, 3), activation="relu", padding='same'),
    #         layers.MaxPooling2D(pool_size=(2, 2)),
    #         layers.Flatten(),
    #         layers.Dropout(0.5),
    #         layers.Dense(10, activation="softmax")
    #     ])

    #     # Compile the model
    #     model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

    #     self.model = model
    
    def build_model(self, x_train):
      # Define the model architecture
      model = keras.Sequential([
          layers.Conv2D(32, kernel_size=(3, 3), activation="relu", padding='same'),
          layers.BatchNormalization(),
          layers.MaxPooling2D(pool_size=(2, 2)),
          layers.Dropout(0.25),

          layers.Conv2D(64, kernel_size=(3, 3), activation="relu", padding='same'),
          layers.BatchNormalization(),
          layers.MaxPooling2D(pool_size=(2, 2)),
          layers.Dropout(0.25),

          layers.Conv2D(128, kernel_size=(3, 3), activation="relu", padding='same'),
          layers.BatchNormalization(),
          layers.MaxPooling2D(pool_size=(2, 2)),
          layers.Dropout(0.25),

          layers.Flatten(),
          layers.Dense(256, activation="relu"),
          layers.BatchNormalization(),
          layers.Dropout(0.5),

          layers.Dense(10, activation="softmax")
      ])

      # Compile the model
      optimizer = keras.optimizers.RMSprop(learning_rate=0.001)
      model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])

      self.model = model

    def train_model(self, x_train, y_train, batch_size, epochs, validation_split):
        # Train the model
        self.model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_split=validation_split)

    def evaluate_model(self, x_test, y_test):
        # Evaluate the model on the test set
        score = self.model.evaluate(x_test, y_test, verbose=0)
        print("Test loss:", score[0])
        print("Test accuracy:", score[1])

    def save_model(self, filepath):
        # Save the trained model
        self.model.save(filepath)

    def load_model(self, filepath):
        # Load the trained model
        self.model = keras.models.load_model(filepath)

    def classify_image(self, image, top_k=3):
        # Preprocess the image
        preprocessed_image = self.preprocess_image(image)

        # Perform inference
        predicted_probs = self.model.predict(np.array([preprocessed_image]))
        top_classes = np.argsort(predicted_probs[0])[-top_k:][::-1]
        top_probs = predicted_probs[0][top_classes]

        return top_classes, top_probs