vaishanthr commited on
Commit
4756ba0
·
1 Parent(s): 683e77a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -18,7 +18,7 @@ vgg16_model = VGG16Classifier()
18
  inceptionV3_model = InceptionV3Classifier()
19
  mobilenet_model = MobileNetClassifier()
20
 
21
- def make_prediction(image, model_type):
22
  if "CNN (Custom)" == model_type:
23
  top_classes, top_probs = custom_model.classify_image(image, top_k=3)
24
  return {CLASS_NAMES[cls_id]:str(prob) for cls_id, prob in zip(top_classes, top_probs)}
@@ -104,17 +104,18 @@ if __name__ == "__main__":
104
  output_label = gr.Label()
105
 
106
  gr.Markdown("## Sample Images")
107
- print(os.path.join(os.path.dirname(__file__), "assets/dog_2.jpg"))
108
  gr.Examples(
109
  examples=[os.path.join(os.path.dirname(__file__), "assets/dog_2.jpg"),
110
  os.path.join(os.path.dirname(__file__), "assets/truck.jpg"),
111
  os.path.join(os.path.dirname(__file__), "assets/car.jpg")
112
  ],
113
- inputs=[img_input, model_type],
114
- outputs=[output_label],
115
  fn=make_prediction,
116
  cache_examples=True,
117
  )
 
 
118
 
119
  # app logic
120
  predict_btn_1.click(make_prediction, inputs=[img_input, model_type], outputs=[output_label])
 
18
  inceptionV3_model = InceptionV3Classifier()
19
  mobilenet_model = MobileNetClassifier()
20
 
21
+ def make_prediction(image, model_type="CNN (Custom)"):
22
  if "CNN (Custom)" == model_type:
23
  top_classes, top_probs = custom_model.classify_image(image, top_k=3)
24
  return {CLASS_NAMES[cls_id]:str(prob) for cls_id, prob in zip(top_classes, top_probs)}
 
104
  output_label = gr.Label()
105
 
106
  gr.Markdown("## Sample Images")
 
107
  gr.Examples(
108
  examples=[os.path.join(os.path.dirname(__file__), "assets/dog_2.jpg"),
109
  os.path.join(os.path.dirname(__file__), "assets/truck.jpg"),
110
  os.path.join(os.path.dirname(__file__), "assets/car.jpg")
111
  ],
112
+ inputs=img_input,
113
+ outputs=output_label,
114
  fn=make_prediction,
115
  cache_examples=True,
116
  )
117
+
118
+
119
 
120
  # app logic
121
  predict_btn_1.click(make_prediction, inputs=[img_input, model_type], outputs=[output_label])