File size: 4,524 Bytes
8166792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
661e202
8166792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
661e202
 
8166792
661e202
 
 
 
 
 
8166792
661e202
 
8166792
661e202
8166792
661e202
 
 
 
 
8166792
 
661e202
 
8166792
661e202
8166792
661e202
 
 
 
 
 
 
 
 
8166792
 
661e202
 
8166792
 
 
661e202
8166792
 
 
661e202
 
 
 
 
 
8166792
661e202
 
 
8166792
661e202
 
 
8166792
661e202
 
8166792
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import cv2
import numpy as np
import matplotlib.pyplot as plt
import open3d as o3d





# print(pcd)
# skip = 100   # Skip every n points

# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
# point_range = range(0, pcd.shape[0], skip) # skip points to prevent crash
# ax.scatter(pcd[point_range, 0],   # x
#            pcd[point_range, 1],   # y
#            pcd[point_range, 2],   # z
#            c=pcd[point_range, 2], # height data for color
#            cmap='spectral',
#            marker="x")
# ax.axis('scaled')  # {equal, scaled}
# plt.show()

# pcd_o3d = o3d.geometry.PointCloud()  # create point cloud object
# pcd_o3d.points = o3d.utility.Vector3dVector(pcd)  # set pcd_np as the point cloud points
# # Visualize:
# o3d.visualization.draw_geometries([pcd_o3d])


class PointCloudGenerator:
    def __init__(self):
        # Depth camera parameters:
        self.fx_depth = 5.8262448167737955e+02
        self.fy_depth = 5.8269103270988637e+02
        self.cx_depth = 3.1304475870804731e+02
        self.cy_depth = 2.3844389626620386e+02

    def conver_to_point_cloud_v1(self, depth_img):

        pcd = []
        height, width = depth_img.shape
        for i in range(height):
            for j in range(width):
                z = depth_img[i][j]
                x = (j - self.cx_depth) * z / self.fx_depth
                y = (i - self.cy_depth) * z / self.fy_depth
                pcd.append([x, y, z])
        
        return pcd

    def conver_to_point_cloud(self, depth_img):

        # get depth resolution:
        height, width = depth_img.shape
        length = height * width

        # compute indices:
        jj = np.tile(range(width), height)
        ii = np.repeat(range(height), width)

        # rechape depth image
        z = depth_img.reshape(length)
        # compute pcd:
        pcd = np.dstack([(ii - self.cx_depth) * z / self.fx_depth,
                        (jj - self.cy_depth) * z / self.fy_depth,
                        z]).reshape((length, 3))
        
        return pcd

    def generate_point_cloud(self, depth_img, normalize=False):
              

        if normalize:
            # normalizing depth image
            depth_min = depth_img.min()
            depth_max = depth_img.max()
            normalized_depth = 255 * ((depth_img - depth_min) / (depth_max - depth_min))
            depth_img = normalized_depth

        # convert depth to point cloud
        # point_cloud = self.conver_to_point_cloud(depth_img)

        depth_image = o3d.geometry.Image(depth_img)

        # Create open3d camera intrinsic object
        intrinsic_matrix = np.array([[self.fx_depth, 0, self.cx_depth], [0, self.fy_depth, self.cy_depth], [0, 0, 1]])
        camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
        # camera_intrinsic.intrinsic_matrix = intrinsic_matrix
        camera_intrinsic.set_intrinsics(depth_image.width, depth_image.height, self.fx_depth, self.fy_depth, self.cx_depth, self.cy_depth)


        # Create open3d point cloud from depth image
        point_cloud = o3d.geometry.PointCloud.create_from_depth_image(depth_img, camera_intrinsic)

        return point_cloud
    
def display_pcd(pcd_data, use_matplotlib=True):

    if use_matplotlib:
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')

    for data, clr in pcd_data:    
        points = np.array(data)
        skip = 5 
        point_range = range(0, points.shape[0], skip) # skip points to prevent crash

        if use_matplotlib:            
            ax.scatter(points[point_range, 0], points[point_range, 1], points[point_range, 2], c='r', marker='o')  
        
        if not use_matplotlib:
            pcd_o3d = o3d.geometry.PointCloud()  # create point cloud object
            pcd_o3d.points = o3d.utility.Vector3dVector(points)  # set pcd_np as the point cloud points
            # Visualize:
            o3d.visualization.draw_geometries([pcd_o3d])

    if use_matplotlib:
        ax.set_xlabel('X Label')
        ax.set_ylabel('Y Label')
        ax.set_zlabel('Z Label')
        ax.view_init(elev=90, azim=0, roll=0) 
        plt.show()

    if not use_matplotlib:
        o3d.visualization.draw_geometries([pcd_o3d])
    
if __name__ == "__main__":
    depth_img_path = "assets/images/depth_map_p1.png"
    depth_img = cv2.imread(depth_img_path, 0) 
    depth_img = depth_img/255
    point_cloud_gen = PointCloudGenerator()
    pcd = point_cloud_gen.generate_point_cloud(depth_img)
    display_pcd([pcd], use_matplotlib=True)