File size: 7,187 Bytes
8166792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Ultralytics YOLO πŸš€, AGPL-3.0 license

from pathlib import Path

import cv2
import numpy as np
import torch
from PIL import Image
from torchvision.transforms import ToTensor

from ultralytics import RTDETR, YOLO
from ultralytics.yolo.data.build import load_inference_source
from ultralytics.yolo.utils import LINUX, ONLINE, ROOT, SETTINGS

MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n.pt'
CFG = 'yolov8n.yaml'
SOURCE = ROOT / 'assets/bus.jpg'
SOURCE_GREYSCALE = Path(f'{SOURCE.parent / SOURCE.stem}_greyscale.jpg')
SOURCE_RGBA = Path(f'{SOURCE.parent / SOURCE.stem}_4ch.png')

# Convert SOURCE to greyscale and 4-ch
im = Image.open(SOURCE)
im.convert('L').save(SOURCE_GREYSCALE)  # greyscale
im.convert('RGBA').save(SOURCE_RGBA)  # 4-ch PNG with alpha


def test_model_forward():
    model = YOLO(CFG)
    model(SOURCE)


def test_model_info():
    model = YOLO(CFG)
    model.info()
    model = YOLO(MODEL)
    model.info(verbose=True)


def test_model_fuse():
    model = YOLO(CFG)
    model.fuse()
    model = YOLO(MODEL)
    model.fuse()


def test_predict_dir():
    model = YOLO(MODEL)
    model(source=ROOT / 'assets')


def test_predict_img():
    model = YOLO(MODEL)
    seg_model = YOLO('yolov8n-seg.pt')
    cls_model = YOLO('yolov8n-cls.pt')
    pose_model = YOLO('yolov8n-pose.pt')
    im = cv2.imread(str(SOURCE))
    assert len(model(source=Image.open(SOURCE), save=True, verbose=True)) == 1  # PIL
    assert len(model(source=im, save=True, save_txt=True)) == 1  # ndarray
    assert len(model(source=[im, im], save=True, save_txt=True)) == 2  # batch
    assert len(list(model(source=[im, im], save=True, stream=True))) == 2  # stream
    assert len(model(torch.zeros(320, 640, 3).numpy())) == 1  # tensor to numpy
    batch = [
        str(SOURCE),  # filename
        Path(SOURCE),  # Path
        'https://ultralytics.com/images/zidane.jpg' if ONLINE else SOURCE,  # URI
        cv2.imread(str(SOURCE)),  # OpenCV
        Image.open(SOURCE),  # PIL
        np.zeros((320, 640, 3))]  # numpy
    assert len(model(batch, visualize=True)) == len(batch)  # multiple sources in a batch

    # Test tensor inference
    im = cv2.imread(str(SOURCE))  # OpenCV
    t = cv2.resize(im, (32, 32))
    t = ToTensor()(t)
    t = torch.stack([t, t, t, t])
    results = model(t, visualize=True)
    assert len(results) == t.shape[0]
    results = seg_model(t, visualize=True)
    assert len(results) == t.shape[0]
    results = cls_model(t, visualize=True)
    assert len(results) == t.shape[0]
    results = pose_model(t, visualize=True)
    assert len(results) == t.shape[0]


def test_predict_grey_and_4ch():
    model = YOLO(MODEL)
    for f in SOURCE_RGBA, SOURCE_GREYSCALE:
        for source in Image.open(f), cv2.imread(str(f)), f:
            model(source, save=True, verbose=True)


def test_val():
    model = YOLO(MODEL)
    model.val(data='coco8.yaml', imgsz=32)


def test_val_scratch():
    model = YOLO(CFG)
    model.val(data='coco8.yaml', imgsz=32)


def test_amp():
    if torch.cuda.is_available():
        from ultralytics.yolo.utils.checks import check_amp
        model = YOLO(MODEL).model.cuda()
        assert check_amp(model)


def test_train_scratch():
    model = YOLO(CFG)
    model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='disk')  # test disk caching
    model(SOURCE)


def test_train_pretrained():
    model = YOLO(MODEL)
    model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='ram')  # test RAM caching
    model(SOURCE)


def test_export_torchscript():
    model = YOLO(MODEL)
    f = model.export(format='torchscript')
    YOLO(f)(SOURCE)  # exported model inference


def test_export_torchscript_scratch():
    model = YOLO(CFG)
    f = model.export(format='torchscript')
    YOLO(f)(SOURCE)  # exported model inference


def test_export_onnx():
    model = YOLO(MODEL)
    f = model.export(format='onnx')
    YOLO(f)(SOURCE)  # exported model inference


def test_export_openvino():
    model = YOLO(MODEL)
    f = model.export(format='openvino')
    YOLO(f)(SOURCE)  # exported model inference


def test_export_coreml():  # sourcery skip: move-assign
    model = YOLO(MODEL)
    model.export(format='coreml')
    # if MACOS:
    #    YOLO(f)(SOURCE)  # model prediction only supported on macOS


def test_export_tflite(enabled=False):
    # TF suffers from install conflicts on Windows and macOS
    if enabled and LINUX:
        model = YOLO(MODEL)
        f = model.export(format='tflite')
        YOLO(f)(SOURCE)


def test_export_pb(enabled=False):
    # TF suffers from install conflicts on Windows and macOS
    if enabled and LINUX:
        model = YOLO(MODEL)
        f = model.export(format='pb')
        YOLO(f)(SOURCE)


def test_export_paddle(enabled=False):
    # Paddle protobuf requirements conflicting with onnx protobuf requirements
    if enabled:
        model = YOLO(MODEL)
        model.export(format='paddle')


def test_all_model_yamls():
    for m in list((ROOT / 'models').rglob('yolo*.yaml')):
        if m.name == 'yolov8-rtdetr.yaml':  # except the rtdetr model
            RTDETR(m.name)
        else:
            YOLO(m.name)


def test_workflow():
    model = YOLO(MODEL)
    model.train(data='coco8.yaml', epochs=1, imgsz=32)
    model.val()
    model.predict(SOURCE)
    model.export(format='onnx')  # export a model to ONNX format


def test_predict_callback_and_setup():
    # test callback addition for prediction
    def on_predict_batch_end(predictor):  # results -> List[batch_size]
        path, im0s, _, _ = predictor.batch
        # print('on_predict_batch_end', im0s[0].shape)
        im0s = im0s if isinstance(im0s, list) else [im0s]
        bs = [predictor.dataset.bs for _ in range(len(path))]
        predictor.results = zip(predictor.results, im0s, bs)

    model = YOLO(MODEL)
    model.add_callback('on_predict_batch_end', on_predict_batch_end)

    dataset = load_inference_source(source=SOURCE)
    bs = dataset.bs  # noqa access predictor properties
    results = model.predict(dataset, stream=True)  # source already setup
    for _, (result, im0, bs) in enumerate(results):
        print('test_callback', im0.shape)
        print('test_callback', bs)
        boxes = result.boxes  # Boxes object for bbox outputs
        print(boxes)


def _test_results_api(res):
    # General apis except plot
    res = res.cpu().numpy()
    # res = res.cuda()
    res = res.to(device='cpu', dtype=torch.float32)
    res.save_txt('label.txt', save_conf=False)
    res.save_txt('label.txt', save_conf=True)
    res.save_crop('crops/')
    res.tojson(normalize=False)
    res.tojson(normalize=True)
    res.plot(pil=True)
    res.plot(conf=True, boxes=False)
    res.plot()
    print(res)
    print(res.path)
    for k in res.keys:
        print(getattr(res, k))


def test_results():
    for m in ['yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt', 'yolov8n-cls.pt']:
        model = YOLO(m)
        res = model([SOURCE, SOURCE])
        _test_results_api(res[0])


def test_track():
    im = cv2.imread(str(SOURCE))
    for m in ['yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt']:
        model = YOLO(m)
        res = model.track(source=im)
        _test_results_api(res[0])