File size: 7,187 Bytes
8166792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# Ultralytics YOLO π, AGPL-3.0 license
from pathlib import Path
import cv2
import numpy as np
import torch
from PIL import Image
from torchvision.transforms import ToTensor
from ultralytics import RTDETR, YOLO
from ultralytics.yolo.data.build import load_inference_source
from ultralytics.yolo.utils import LINUX, ONLINE, ROOT, SETTINGS
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n.pt'
CFG = 'yolov8n.yaml'
SOURCE = ROOT / 'assets/bus.jpg'
SOURCE_GREYSCALE = Path(f'{SOURCE.parent / SOURCE.stem}_greyscale.jpg')
SOURCE_RGBA = Path(f'{SOURCE.parent / SOURCE.stem}_4ch.png')
# Convert SOURCE to greyscale and 4-ch
im = Image.open(SOURCE)
im.convert('L').save(SOURCE_GREYSCALE) # greyscale
im.convert('RGBA').save(SOURCE_RGBA) # 4-ch PNG with alpha
def test_model_forward():
model = YOLO(CFG)
model(SOURCE)
def test_model_info():
model = YOLO(CFG)
model.info()
model = YOLO(MODEL)
model.info(verbose=True)
def test_model_fuse():
model = YOLO(CFG)
model.fuse()
model = YOLO(MODEL)
model.fuse()
def test_predict_dir():
model = YOLO(MODEL)
model(source=ROOT / 'assets')
def test_predict_img():
model = YOLO(MODEL)
seg_model = YOLO('yolov8n-seg.pt')
cls_model = YOLO('yolov8n-cls.pt')
pose_model = YOLO('yolov8n-pose.pt')
im = cv2.imread(str(SOURCE))
assert len(model(source=Image.open(SOURCE), save=True, verbose=True)) == 1 # PIL
assert len(model(source=im, save=True, save_txt=True)) == 1 # ndarray
assert len(model(source=[im, im], save=True, save_txt=True)) == 2 # batch
assert len(list(model(source=[im, im], save=True, stream=True))) == 2 # stream
assert len(model(torch.zeros(320, 640, 3).numpy())) == 1 # tensor to numpy
batch = [
str(SOURCE), # filename
Path(SOURCE), # Path
'https://ultralytics.com/images/zidane.jpg' if ONLINE else SOURCE, # URI
cv2.imread(str(SOURCE)), # OpenCV
Image.open(SOURCE), # PIL
np.zeros((320, 640, 3))] # numpy
assert len(model(batch, visualize=True)) == len(batch) # multiple sources in a batch
# Test tensor inference
im = cv2.imread(str(SOURCE)) # OpenCV
t = cv2.resize(im, (32, 32))
t = ToTensor()(t)
t = torch.stack([t, t, t, t])
results = model(t, visualize=True)
assert len(results) == t.shape[0]
results = seg_model(t, visualize=True)
assert len(results) == t.shape[0]
results = cls_model(t, visualize=True)
assert len(results) == t.shape[0]
results = pose_model(t, visualize=True)
assert len(results) == t.shape[0]
def test_predict_grey_and_4ch():
model = YOLO(MODEL)
for f in SOURCE_RGBA, SOURCE_GREYSCALE:
for source in Image.open(f), cv2.imread(str(f)), f:
model(source, save=True, verbose=True)
def test_val():
model = YOLO(MODEL)
model.val(data='coco8.yaml', imgsz=32)
def test_val_scratch():
model = YOLO(CFG)
model.val(data='coco8.yaml', imgsz=32)
def test_amp():
if torch.cuda.is_available():
from ultralytics.yolo.utils.checks import check_amp
model = YOLO(MODEL).model.cuda()
assert check_amp(model)
def test_train_scratch():
model = YOLO(CFG)
model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='disk') # test disk caching
model(SOURCE)
def test_train_pretrained():
model = YOLO(MODEL)
model.train(data='coco8.yaml', epochs=1, imgsz=32, cache='ram') # test RAM caching
model(SOURCE)
def test_export_torchscript():
model = YOLO(MODEL)
f = model.export(format='torchscript')
YOLO(f)(SOURCE) # exported model inference
def test_export_torchscript_scratch():
model = YOLO(CFG)
f = model.export(format='torchscript')
YOLO(f)(SOURCE) # exported model inference
def test_export_onnx():
model = YOLO(MODEL)
f = model.export(format='onnx')
YOLO(f)(SOURCE) # exported model inference
def test_export_openvino():
model = YOLO(MODEL)
f = model.export(format='openvino')
YOLO(f)(SOURCE) # exported model inference
def test_export_coreml(): # sourcery skip: move-assign
model = YOLO(MODEL)
model.export(format='coreml')
# if MACOS:
# YOLO(f)(SOURCE) # model prediction only supported on macOS
def test_export_tflite(enabled=False):
# TF suffers from install conflicts on Windows and macOS
if enabled and LINUX:
model = YOLO(MODEL)
f = model.export(format='tflite')
YOLO(f)(SOURCE)
def test_export_pb(enabled=False):
# TF suffers from install conflicts on Windows and macOS
if enabled and LINUX:
model = YOLO(MODEL)
f = model.export(format='pb')
YOLO(f)(SOURCE)
def test_export_paddle(enabled=False):
# Paddle protobuf requirements conflicting with onnx protobuf requirements
if enabled:
model = YOLO(MODEL)
model.export(format='paddle')
def test_all_model_yamls():
for m in list((ROOT / 'models').rglob('yolo*.yaml')):
if m.name == 'yolov8-rtdetr.yaml': # except the rtdetr model
RTDETR(m.name)
else:
YOLO(m.name)
def test_workflow():
model = YOLO(MODEL)
model.train(data='coco8.yaml', epochs=1, imgsz=32)
model.val()
model.predict(SOURCE)
model.export(format='onnx') # export a model to ONNX format
def test_predict_callback_and_setup():
# test callback addition for prediction
def on_predict_batch_end(predictor): # results -> List[batch_size]
path, im0s, _, _ = predictor.batch
# print('on_predict_batch_end', im0s[0].shape)
im0s = im0s if isinstance(im0s, list) else [im0s]
bs = [predictor.dataset.bs for _ in range(len(path))]
predictor.results = zip(predictor.results, im0s, bs)
model = YOLO(MODEL)
model.add_callback('on_predict_batch_end', on_predict_batch_end)
dataset = load_inference_source(source=SOURCE)
bs = dataset.bs # noqa access predictor properties
results = model.predict(dataset, stream=True) # source already setup
for _, (result, im0, bs) in enumerate(results):
print('test_callback', im0.shape)
print('test_callback', bs)
boxes = result.boxes # Boxes object for bbox outputs
print(boxes)
def _test_results_api(res):
# General apis except plot
res = res.cpu().numpy()
# res = res.cuda()
res = res.to(device='cpu', dtype=torch.float32)
res.save_txt('label.txt', save_conf=False)
res.save_txt('label.txt', save_conf=True)
res.save_crop('crops/')
res.tojson(normalize=False)
res.tojson(normalize=True)
res.plot(pil=True)
res.plot(conf=True, boxes=False)
res.plot()
print(res)
print(res.path)
for k in res.keys:
print(getattr(res, k))
def test_results():
for m in ['yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt', 'yolov8n-cls.pt']:
model = YOLO(m)
res = model([SOURCE, SOURCE])
_test_results_api(res[0])
def test_track():
im = cv2.imread(str(SOURCE))
for m in ['yolov8n-pose.pt', 'yolov8n-seg.pt', 'yolov8n.pt']:
model = YOLO(m)
res = model.track(source=im)
_test_results_api(res[0])
|