|
|
|
""" |
|
RT-DETR model interface |
|
""" |
|
|
|
from pathlib import Path |
|
|
|
import torch.nn as nn |
|
|
|
from ultralytics.nn.tasks import RTDETRDetectionModel, attempt_load_one_weight, yaml_model_load |
|
from ultralytics.yolo.cfg import get_cfg |
|
from ultralytics.yolo.engine.exporter import Exporter |
|
from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, RANK, ROOT, is_git_dir |
|
from ultralytics.yolo.utils.checks import check_imgsz |
|
from ultralytics.yolo.utils.torch_utils import model_info, smart_inference_mode |
|
|
|
from .predict import RTDETRPredictor |
|
from .train import RTDETRTrainer |
|
from .val import RTDETRValidator |
|
|
|
|
|
class RTDETR: |
|
|
|
def __init__(self, model='rtdetr-l.pt') -> None: |
|
if model and not model.endswith('.pt') and not model.endswith('.yaml'): |
|
raise NotImplementedError('RT-DETR only supports creating from pt file or yaml file.') |
|
|
|
self.predictor = None |
|
self.ckpt = None |
|
suffix = Path(model).suffix |
|
if suffix == '.yaml': |
|
self._new(model) |
|
else: |
|
self._load(model) |
|
|
|
def _new(self, cfg: str, verbose=True): |
|
cfg_dict = yaml_model_load(cfg) |
|
self.cfg = cfg |
|
self.task = 'detect' |
|
self.model = RTDETRDetectionModel(cfg_dict, verbose=verbose) |
|
|
|
|
|
self.model.args = DEFAULT_CFG_DICT |
|
self.model.task = self.task |
|
|
|
@smart_inference_mode() |
|
def _load(self, weights: str): |
|
self.model, self.ckpt = attempt_load_one_weight(weights) |
|
self.model.args = DEFAULT_CFG_DICT |
|
self.task = self.model.args['task'] |
|
|
|
@smart_inference_mode() |
|
def load(self, weights='yolov8n.pt'): |
|
""" |
|
Transfers parameters with matching names and shapes from 'weights' to model. |
|
""" |
|
if isinstance(weights, (str, Path)): |
|
weights, self.ckpt = attempt_load_one_weight(weights) |
|
self.model.load(weights) |
|
return self |
|
|
|
@smart_inference_mode() |
|
def predict(self, source=None, stream=False, **kwargs): |
|
""" |
|
Perform prediction using the YOLO model. |
|
|
|
Args: |
|
source (str | int | PIL | np.ndarray): The source of the image to make predictions on. |
|
Accepts all source types accepted by the YOLO model. |
|
stream (bool): Whether to stream the predictions or not. Defaults to False. |
|
**kwargs : Additional keyword arguments passed to the predictor. |
|
Check the 'configuration' section in the documentation for all available options. |
|
|
|
Returns: |
|
(List[ultralytics.yolo.engine.results.Results]): The prediction results. |
|
""" |
|
if source is None: |
|
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' |
|
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") |
|
overrides = dict(conf=0.25, task='detect', mode='predict') |
|
overrides.update(kwargs) |
|
if not self.predictor: |
|
self.predictor = RTDETRPredictor(overrides=overrides) |
|
self.predictor.setup_model(model=self.model) |
|
else: |
|
self.predictor.args = get_cfg(self.predictor.args, overrides) |
|
return self.predictor(source, stream=stream) |
|
|
|
def train(self, **kwargs): |
|
""" |
|
Trains the model on a given dataset. |
|
|
|
Args: |
|
**kwargs (Any): Any number of arguments representing the training configuration. |
|
""" |
|
overrides = dict(task='detect', mode='train') |
|
overrides.update(kwargs) |
|
overrides['deterministic'] = False |
|
if not overrides.get('data'): |
|
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'") |
|
if overrides.get('resume'): |
|
overrides['resume'] = self.ckpt_path |
|
self.task = overrides.get('task') or self.task |
|
self.trainer = RTDETRTrainer(overrides=overrides) |
|
if not overrides.get('resume'): |
|
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml) |
|
self.model = self.trainer.model |
|
self.trainer.train() |
|
|
|
if RANK in (-1, 0): |
|
self.model, _ = attempt_load_one_weight(str(self.trainer.best)) |
|
self.overrides = self.model.args |
|
self.metrics = getattr(self.trainer.validator, 'metrics', None) |
|
|
|
def val(self, **kwargs): |
|
"""Run validation given dataset.""" |
|
overrides = dict(task='detect', mode='val') |
|
overrides.update(kwargs) |
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) |
|
args.imgsz = check_imgsz(args.imgsz, max_dim=1) |
|
validator = RTDETRValidator(args=args) |
|
validator(model=self.model) |
|
self.metrics = validator.metrics |
|
return validator.metrics |
|
|
|
def info(self, verbose=True): |
|
"""Get model info""" |
|
return model_info(self.model, verbose=verbose) |
|
|
|
def _check_is_pytorch_model(self): |
|
""" |
|
Raises TypeError is model is not a PyTorch model |
|
""" |
|
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt' |
|
pt_module = isinstance(self.model, nn.Module) |
|
if not (pt_module or pt_str): |
|
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. " |
|
f'PyTorch models can be used to train, val, predict and export, i.e. ' |
|
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only " |
|
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.") |
|
|
|
def fuse(self): |
|
"""Fuse PyTorch Conv2d and BatchNorm2d layers.""" |
|
self._check_is_pytorch_model() |
|
self.model.fuse() |
|
|
|
@smart_inference_mode() |
|
def export(self, **kwargs): |
|
""" |
|
Export model. |
|
|
|
Args: |
|
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs |
|
""" |
|
overrides = dict(task='detect') |
|
overrides.update(kwargs) |
|
overrides['mode'] = 'export' |
|
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) |
|
args.task = self.task |
|
if args.imgsz == DEFAULT_CFG.imgsz: |
|
args.imgsz = self.model.args['imgsz'] |
|
if args.batch == DEFAULT_CFG.batch: |
|
args.batch = 1 |
|
return Exporter(overrides=args)(model=self.model) |
|
|
|
def __call__(self, source=None, stream=False, **kwargs): |
|
"""Calls the 'predict' function with given arguments to perform object detection.""" |
|
return self.predict(source, stream, **kwargs) |
|
|
|
def __getattr__(self, attr): |
|
"""Raises error if object has no requested attribute.""" |
|
name = self.__class__.__name__ |
|
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") |
|
|