Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import pickle
|
4 |
+
import time
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
from langchain.llms.base import LLM
|
7 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.document_loaders import UnstructuredURLLoader
|
10 |
+
from langchain.vectorstores import FAISS
|
11 |
+
from secret_key import google_genai_api_key
|
12 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
13 |
+
|
14 |
+
|
15 |
+
class CustomHuggingFaceLLM(LLM):
|
16 |
+
def __init__(self, model_name, temperature=0.7):
|
17 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
18 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
+
self.temperature = temperature
|
20 |
+
|
21 |
+
def _call(self, prompt, stop=None):
|
22 |
+
input_ids = self.tokenizer.encode(prompt, return_tensors="pt")
|
23 |
+
output = self.model.generate(
|
24 |
+
input_ids,
|
25 |
+
max_length=512,
|
26 |
+
temperature=self.temperature,
|
27 |
+
do_sample=True,
|
28 |
+
top_p=0.95,
|
29 |
+
top_k=3
|
30 |
+
)
|
31 |
+
generated_text = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
32 |
+
return generated_text
|
33 |
+
|
34 |
+
@property
|
35 |
+
def _identifying_params(self):
|
36 |
+
return {"model_name": self.model.config._name_or_path, "temperature": self.temperature}
|
37 |
+
|
38 |
+
@property
|
39 |
+
def _llm_type(self):
|
40 |
+
return "custom_huggingface"
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
main_directory = os.path.dirname(os.path.abspath(__file__))
|
45 |
+
|
46 |
+
st.title("Web Page search Bot: Research Tool π")
|
47 |
+
st.sidebar.title("Article URLs")
|
48 |
+
|
49 |
+
urls = []
|
50 |
+
for i in range(3):
|
51 |
+
url = st.sidebar.text_input(f"URL {i+1}")
|
52 |
+
urls.append(url)
|
53 |
+
|
54 |
+
process_url_clicked = st.sidebar.button("Process URLs")
|
55 |
+
file_path_faiss = "faiss_store.pkl"
|
56 |
+
|
57 |
+
main_placeholder = st.empty()
|
58 |
+
|
59 |
+
# Load a pre-trained embedding model
|
60 |
+
embedding_model = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
|
61 |
+
llm = CustomHuggingFaceLLM(model_name="meta-llama/Meta-Llama-3.1-8B", temperature=0.6)
|
62 |
+
if process_url_clicked:
|
63 |
+
# load data
|
64 |
+
loader = UnstructuredURLLoader(urls=urls)
|
65 |
+
main_placeholder.text("Data Loading...Started...β
β
β
")
|
66 |
+
data = loader.load()
|
67 |
+
# split data
|
68 |
+
# Do not include unnecessary separators like , and . It will reduce chunks too small.
|
69 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
70 |
+
separators=['\n\n'],
|
71 |
+
chunk_size=1000,
|
72 |
+
chunk_overlap=100
|
73 |
+
)
|
74 |
+
main_placeholder.text("Text Splitter...Started...β
β
β
")
|
75 |
+
docs = text_splitter.split_documents(data)
|
76 |
+
|
77 |
+
# create embeddings and save it to FAISS index
|
78 |
+
vectorstore_faiss = FAISS.from_documents(documents=docs,embedding=embedding_model)
|
79 |
+
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
80 |
+
time.sleep(2)
|
81 |
+
|
82 |
+
# Save the FAISS index to a pickle file
|
83 |
+
with open(file_path_faiss, "wb") as f:
|
84 |
+
pickle.dump(vectorstore_faiss, f)
|
85 |
+
|
86 |
+
query = main_placeholder.text_input("Question: ")
|
87 |
+
if query:
|
88 |
+
if os.path.exists(file_path_faiss):
|
89 |
+
with open(file_path_faiss, "rb") as f:
|
90 |
+
vectorstore = pickle.load(f)
|
91 |
+
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), verbose=True) # type: ignore
|
92 |
+
result = chain({"question": query}, return_only_outputs=True)
|
93 |
+
# result will be a dictionary of this format --> {"answer": "", "sources": [] }
|
94 |
+
st.header("Answer")
|
95 |
+
st.write(result["answer"])
|
96 |
+
|
97 |
+
# Display sources, if available
|
98 |
+
sources = result.get("sources", "")
|
99 |
+
if sources:
|
100 |
+
st.subheader("Sources:")
|
101 |
+
sources_list = sources.split("\n") # Split the sources by newline
|
102 |
+
for source in sources_list:
|
103 |
+
st.write(source)
|