Spaces:
Paused
Paused
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
from langchain.prompts import PromptTemplate | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
model = GPT2LMHeadModel.from_pretrained('gpt2') | |
def generate_answer(question): | |
prompt_template = PromptTemplate(template="Answer the following question within 100 words: {question}", | |
input_variables=["question"], output_variables=["answer"]) | |
# Model loading | |
format_prompt = prompt_template.format(question=question) | |
encoded_input = tokenizer(format_prompt, return_tensors='pt') | |
# Run the model | |
output = model.generate(**encoded_input, max_length=100) # Use generate method for text generation | |
# Decode the model output to text | |
decoded_output = tokenizer.decode(output[0]) | |
response_text = decoded_output | |
return response_text | |