Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import librosa
|
4 |
+
import soundfile
|
5 |
+
import nemo.collections.asr as nemo_asr
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
import uuid
|
9 |
+
from pydub import AudioSegment
|
10 |
+
import numpy as np
|
11 |
+
import io
|
12 |
+
|
13 |
+
SAMPLE_RATE = 16000
|
14 |
+
|
15 |
+
# Load pre-trained model
|
16 |
+
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("stt_en_conformer_transducer_large")
|
17 |
+
model.change_decoding_strategy(None)
|
18 |
+
model.eval()
|
19 |
+
|
20 |
+
|
21 |
+
def process_audio_data(audio_data):
|
22 |
+
# Convert stereo to mono
|
23 |
+
if audio_data.channels == 2:
|
24 |
+
audio_data = audio_data.set_channels(1)
|
25 |
+
|
26 |
+
# Convert pydub audio segment to numpy array
|
27 |
+
audio_np = np.array(audio_data.get_array_of_samples())
|
28 |
+
|
29 |
+
# Resample if necessary
|
30 |
+
if audio_data.frame_rate != SAMPLE_RATE:
|
31 |
+
audio_np = librosa.resample(audio_np, audio_data.frame_rate, SAMPLE_RATE)
|
32 |
+
|
33 |
+
return audio_np
|
34 |
+
|
35 |
+
|
36 |
+
def transcribe(audio_np):
|
37 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
38 |
+
# Save audio data to a temporary WAV file
|
39 |
+
audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav')
|
40 |
+
soundfile.write(audio_path, audio_np, SAMPLE_RATE)
|
41 |
+
|
42 |
+
# Transcribe audio
|
43 |
+
transcriptions = model.transcribe([audio_path])
|
44 |
+
|
45 |
+
# Extract best hypothesis if transcriptions form a tuple (from RNNT)
|
46 |
+
if isinstance(transcriptions, tuple) and len(transcriptions) == 2:
|
47 |
+
transcriptions = transcriptions[0]
|
48 |
+
|
49 |
+
return transcriptions[0]
|
50 |
+
|
51 |
+
|
52 |
+
st.title("Speech Recognition with NeMo Conformer Transducer Large - English")
|
53 |
+
|
54 |
+
# Record audio
|
55 |
+
st.write("Click the button below to start recording.")
|
56 |
+
record_state = st.checkbox("Recording")
|
57 |
+
|
58 |
+
if record_state:
|
59 |
+
# Start recording audio
|
60 |
+
recording = st.audio("", format="audio/wav")
|
61 |
+
|
62 |
+
# Stop recording when checkbox is unchecked
|
63 |
+
recording_file = tempfile.NamedTemporaryFile(delete=False)
|
64 |
+
with recording_file as f:
|
65 |
+
while record_state:
|
66 |
+
audio_data = st.audio_recorder(
|
67 |
+
sample_rate=SAMPLE_RATE,
|
68 |
+
format="wav",
|
69 |
+
data_format="audio/wav"
|
70 |
+
)
|
71 |
+
f.write(audio_data.getvalue())
|
72 |
+
|
73 |
+
# Update recording display
|
74 |
+
audio_data = AudioSegment.from_wav(io.BytesIO(audio_data.getvalue()))
|
75 |
+
recording.audio(audio_data, format="audio/wav")
|
76 |
+
record_state = st.checkbox("Recording")
|
77 |
+
|
78 |
+
# Process and transcribe recorded audio
|
79 |
+
recording_file.seek(0)
|
80 |
+
audio_np = process_audio_data(AudioSegment.from_file(recording_file.name))
|
81 |
+
transcript = transcribe(audio_np)
|
82 |
+
|
83 |
+
st.write("Transcription:")
|
84 |
+
st.write(transcript)
|