Spaces:
Sleeping
Sleeping
File size: 2,950 Bytes
2b49a9b 03335e7 2b49a9b 03335e7 2b49a9b d8fec69 03335e7 a8472ea 03335e7 ebf05e2 03335e7 2b49a9b 03335e7 2b49a9b 03335e7 2b49a9b 03335e7 817e88e ebf05e2 817e88e aa6dea3 03335e7 ebf05e2 03335e7 2b49a9b 03335e7 2b49a9b 6a5a1f2 ebf05e2 2b49a9b ebf05e2 2b49a9b ebf05e2 2b49a9b ebf05e2 2b49a9b 3201bb7 2b49a9b 03335e7 2ca989c 7e0d668 2b49a9b 3172baf 2b49a9b 3318dc1 2ca989c 2b49a9b 9f1409e 0ee6f09 9f1409e 2ca989c 2b49a9b 03335e7 2b49a9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import os
os.environ["KERAS_BACKEND"] = "torch" # "jax", "torch" or "tensorflow"
import gradio as gr
import keras_nlp
import keras
import spaces
import torch
from typing import Iterator
import time
from chess_board import Game
import google.generativeai as genai
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
MAX_INPUT_TOKEN_LENGTH = 4096
MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 128
# model_id = "hf://google/gemma-2b-keras"
# model_id = "hf://google/gemma-2-2b-it"
# model_id = 'kaggle://valentinbaltazar/gemma-chess/keras/gemma_2b_en_chess'
# model = keras_nlp.models.GemmaCausalLM.from_preset(model_id)
# tokenizer = model.preprocessor.tokenizer
DESCRIPTION = """
# Gemma 2B
**Welcome to the Gemma Chess Chatbot!**
This game mode allows you to play a game against Gemma, the input must be in algebraic notation. \n
If you need help learning algebraic notation ask Gemma!
"""
api_key = os.getenv("GEMINI_API_KEY")
genai.configure(api_key = api_key)
model = genai.GenerativeModel(model_name='gemini-1.5-flash-latest')
# Chat
chat = model.start_chat()
# @spaces.GPU
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
) -> Iterator[str]:
# input_ids = tokenizer.tokenize(message)
# if len(input_ids) > MAX_INPUT_TOKEN_LENGTH:
# input_ids = input_ids[-MAX_INPUT_TOKEN_LENGTH:]
# gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
# response = model.generate(message, max_length=max_new_tokens)
response = chat.send_message(message)
outputs = ""
for char in response:
outputs += char
yield outputs
chat_interface = gr.ChatInterface(
fn=generate,
stop_btn=None,
examples=[
["Hi Gemma, what is a good first move in chess?"],
["How does the Knight move?"]
],
cache_examples=False,
type="messages",
)
with gr.Blocks(css_paths="styles.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
play_match = Game()
# chess_png = gr.Image(play_match.display_board())
with gr.Row():
with gr.Column():
board_image = gr.HTML(play_match.display_board())
with gr.Column():
chat_interface.render()
game_logs = gr.Label(label="Game Logs", elem_id="game_logs_label")
move_input = gr.Textbox(label="Enter your move in algebraic notation (e.g., e4, Nf3, Bxc4)")
btn = gr.Button("Submit Move")
btn.click(play_match.generate_moves, inputs=move_input, outputs=[board_image, game_logs])
# btn.click(display_text, inputs=play_match.get_move_logs, outputs=text_output)
reset_btn = gr.Button("Reset Game")
reset_btn.click(play_match.reset_board, outputs=board_image)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|