File size: 2,682 Bytes
2b49a9b
 
 
03335e7
2b49a9b
 
 
 
03335e7
2b49a9b
d8fec69
03335e7
a8472ea
03335e7
 
2b49a9b
 
03335e7
2b49a9b
03335e7
2b49a9b
 
03335e7
817e88e
aa6dea3
817e88e
aa6dea3
03335e7
 
2b49a9b
 
03335e7
2b49a9b
 
 
 
 
 
03335e7
2b49a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3201bb7
 
2b49a9b
 
 
03335e7
 
2ca989c
7e0d668
2b49a9b
 
 
 
 
 
3172baf
 
2b49a9b
 
 
aa6dea3
2ca989c
2b49a9b
 
9f1409e
0ee6f09
9f1409e
2ca989c
2b49a9b
 
 
 
03335e7
 
2b49a9b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
os.environ["KERAS_BACKEND"] = "torch"  # "jax", "torch" or "tensorflow"

import gradio as gr
import keras_nlp
import keras
import spaces
import torch

from typing import Iterator
import time

from chess_board import Game


print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")

MAX_INPUT_TOKEN_LENGTH = 4096

MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 128

# model_id = "hf://google/gemma-2b-keras"
model_id = "hf://google/gemma-2-2b-it"

# model_id = 'kaggle://valentinbaltazar/gemma-chess/keras/gemma_2b_en_chess'


model = keras_nlp.models.GemmaCausalLM.from_preset(model_id)
tokenizer = model.preprocessor.tokenizer

DESCRIPTION = """
# Gemma 2B
**Welcome to the Gemma Chess Chatbot!**

This game mode allows you to play a game against Gemma, the input must be in algebraic notation. \n
If you need help learning algebraic notation ask Gemma!
"""

# @spaces.GPU
def generate(
    message: str,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    ) -> Iterator[str]:

    input_ids = tokenizer.tokenize(message)
    
    if len(input_ids) > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[-MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")

    response = model.generate(message, max_length=max_new_tokens)

    outputs = ""
    
    for char in response:
        outputs += char
        yield outputs


chat_interface = gr.ChatInterface(
    fn=generate,
    stop_btn=None,
    examples=[
        ["Hi Gemma, what is a good first move in chess?"],
        ["How does the Knight move?"]
    ],
    cache_examples=False,
    type="messages",
)

    
with gr.Blocks(css_paths="styles.css", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
        
    play_match = Game()

    # chess_png = gr.Image(play_match.display_board())
    with gr.Row():
        with gr.Column():
            board_image = gr.HTML(play_match.display_board())
        with gr.Column():
            chat_interface.render()

    game_logs = gr.Label(label="Game Logs", elem_classes="game_logs_label")
    
    move_input = gr.Textbox(label="Enter your move in algebraic notation (e.g., e4, Nf3, Bxc4)")
    btn = gr.Button("Submit Move")
    btn.click(play_match.generate_moves, inputs=move_input, outputs=[board_image, game_logs])
    
    # btn.click(display_text, inputs=play_match.get_move_logs, outputs=text_output)
    

    reset_btn = gr.Button("Reset Game")
    reset_btn.click(play_match.reset_board, outputs=board_image)


if __name__ == "__main__":
    demo.queue(max_size=20).launch()