Spaces:
Sleeping
Sleeping
Commit
·
9c3e344
1
Parent(s):
bc1c948
added UI for chess openings dataset
Browse files- app.py +66 -50
- chess_board.py +28 -17
app.py
CHANGED
@@ -2,41 +2,29 @@ import os
|
|
2 |
os.environ["KERAS_BACKEND"] = "torch" # "jax", "torch" or "tensorflow"
|
3 |
|
4 |
import gradio as gr
|
5 |
-
import keras_nlp
|
6 |
-
import keras
|
7 |
-
import spaces
|
8 |
-
import torch
|
9 |
|
10 |
from typing import Iterator
|
11 |
import time
|
12 |
|
13 |
from chess_board import Game
|
|
|
|
|
14 |
|
15 |
-
import google.generativeai as genai
|
16 |
|
|
|
|
|
17 |
|
18 |
-
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
19 |
-
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
20 |
-
|
21 |
-
MAX_INPUT_TOKEN_LENGTH = 4096
|
22 |
-
|
23 |
-
MAX_NEW_TOKENS = 2048
|
24 |
-
DEFAULT_MAX_NEW_TOKENS = 128
|
25 |
-
|
26 |
-
# model_id = "hf://google/gemma-2b-keras"
|
27 |
-
# model_id = "hf://google/gemma-2-2b-it"
|
28 |
-
|
29 |
-
# model_id = 'kaggle://valentinbaltazar/gemma-chess/keras/gemma_2b_en_chess'
|
30 |
-
|
31 |
-
|
32 |
-
# model = keras_nlp.models.GemmaCausalLM.from_preset(model_id)
|
33 |
-
# tokenizer = model.preprocessor.tokenizer
|
34 |
|
35 |
DESCRIPTION = """
|
36 |
# Chess Tutor AI
|
37 |
**Welcome to the Chess Chatbot!**
|
38 |
|
39 |
-
The goal of this project is to showcase the use of AI in learning chess. This app allows you to play a game against a custom fine-tuned model (Gemma 2B)
|
|
|
40 |
|
41 |
## Features
|
42 |
|
@@ -46,20 +34,17 @@ The goal of this project is to showcase the use of AI in learning chess. This ap
|
|
46 |
### For Advanced Users
|
47 |
- Pick an opening to play, and ask Gemini for more info.
|
48 |
|
49 |
-
|
50 |
-
<br>
|
51 |
-
|
52 |
Enjoy your game!
|
53 |
**- Valentin**
|
54 |
"""
|
55 |
|
56 |
-
api_key = os.getenv("GEMINI_API_KEY")
|
57 |
-
genai.configure(api_key = api_key)
|
58 |
|
59 |
-
model = genai.GenerativeModel(model_name='gemini-1.5-flash-latest')
|
60 |
|
61 |
# Chat
|
62 |
-
chat = model.start_chat()
|
63 |
|
64 |
# @spaces.GPU
|
65 |
def generate(
|
@@ -68,23 +53,36 @@ def generate(
|
|
68 |
max_new_tokens: int = 1024,
|
69 |
) -> Iterator[str]:
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
# if len(input_ids) > MAX_INPUT_TOKEN_LENGTH:
|
74 |
-
# input_ids = input_ids[-MAX_INPUT_TOKEN_LENGTH:]
|
75 |
-
# gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
76 |
-
|
77 |
-
# response = model.generate(message, max_length=max_new_tokens)
|
78 |
-
|
79 |
-
response = chat.send_message(message)
|
80 |
|
81 |
outputs = ""
|
82 |
|
83 |
-
for char in response
|
84 |
outputs += char
|
85 |
yield outputs
|
86 |
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
chat_interface = gr.ChatInterface(
|
89 |
fn=generate,
|
90 |
stop_btn=None,
|
@@ -98,7 +96,9 @@ chat_interface = gr.ChatInterface(
|
|
98 |
)
|
99 |
|
100 |
|
101 |
-
with gr.Blocks(
|
|
|
|
|
102 |
gr.Markdown(DESCRIPTION)
|
103 |
|
104 |
play_match = Game()
|
@@ -110,19 +110,35 @@ with gr.Blocks(css_paths="styles.css", fill_height=True) as demo:
|
|
110 |
with gr.Column():
|
111 |
chat_interface.render()
|
112 |
|
113 |
-
game_logs = gr.Label(label="Game Logs",
|
114 |
-
|
115 |
-
move_input = gr.Textbox(label="Enter your move in algebraic notation (e.g., e4, Nf3, Bxc4)")
|
116 |
-
btn = gr.Button("Submit Move")
|
117 |
-
btn.click(play_match.generate_moves, inputs=move_input, outputs=[board_image, game_logs])
|
118 |
-
btn.click(lambda x: gr.update(value=''), [],[move_input])
|
119 |
-
|
120 |
-
# btn.click(display_text, inputs=play_match.get_move_logs, outputs=text_output)
|
121 |
|
|
|
|
|
|
|
122 |
|
123 |
-
|
124 |
-
|
|
|
|
|
125 |
|
|
|
|
|
|
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
if __name__ == "__main__":
|
128 |
demo.queue(max_size=20).launch()
|
|
|
2 |
os.environ["KERAS_BACKEND"] = "torch" # "jax", "torch" or "tensorflow"
|
3 |
|
4 |
import gradio as gr
|
5 |
+
# import keras_nlp
|
6 |
+
# import keras
|
7 |
+
# import spaces
|
8 |
+
# import torch
|
9 |
|
10 |
from typing import Iterator
|
11 |
import time
|
12 |
|
13 |
from chess_board import Game
|
14 |
+
from datasets import load_dataset
|
15 |
+
# import google.generativeai as genai
|
16 |
|
|
|
17 |
|
18 |
+
# print(f"Is CUDA available: {torch.cuda.is_available()}")
|
19 |
+
# print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
DESCRIPTION = """
|
23 |
# Chess Tutor AI
|
24 |
**Welcome to the Chess Chatbot!**
|
25 |
|
26 |
+
The goal of this project is to showcase the use of AI in learning chess. This app allows you to play a game against a custom fine-tuned model (Gemma 2B).\n
|
27 |
+
The challenge is that input must be in *algebraic notation*.
|
28 |
|
29 |
## Features
|
30 |
|
|
|
34 |
### For Advanced Users
|
35 |
- Pick an opening to play, and ask Gemini for more info.
|
36 |
|
|
|
|
|
|
|
37 |
Enjoy your game!
|
38 |
**- Valentin**
|
39 |
"""
|
40 |
|
41 |
+
# api_key = os.getenv("GEMINI_API_KEY")
|
42 |
+
# genai.configure(api_key = api_key)
|
43 |
|
44 |
+
# model = genai.GenerativeModel(model_name='gemini-1.5-flash-latest')
|
45 |
|
46 |
# Chat
|
47 |
+
# chat = model.start_chat()
|
48 |
|
49 |
# @spaces.GPU
|
50 |
def generate(
|
|
|
53 |
max_new_tokens: int = 1024,
|
54 |
) -> Iterator[str]:
|
55 |
|
56 |
+
response = "hi there" #chat.send_message(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
outputs = ""
|
59 |
|
60 |
+
for char in response:
|
61 |
outputs += char
|
62 |
yield outputs
|
63 |
|
64 |
|
65 |
+
# Load the dataset and convert to pandas DataFrame
|
66 |
+
ds = load_dataset("Lichess/chess-openings", split="train")
|
67 |
+
df = ds.to_pandas()
|
68 |
+
|
69 |
+
# Function to retrieve moves and name for a selected opening
|
70 |
+
def get_opening_details(opening_name):
|
71 |
+
opening_data = df[df['name'] == opening_name].iloc[0]
|
72 |
+
moves = opening_data['pgn']
|
73 |
+
return f"Opening: {opening_data['name']}\nMoves: {moves}"
|
74 |
+
|
75 |
+
def get_move_list(opening_name):
|
76 |
+
opening_data = df[df['name'] == opening_name].iloc[0]
|
77 |
+
moves = opening_data['pgn']
|
78 |
+
pgn_string = moves.split()
|
79 |
+
return [move for idx,move in enumerate(pgn_string[1:],1) if idx%3!=0]
|
80 |
+
# return ['e4', 'e5', 'Nf3']
|
81 |
+
|
82 |
+
# Create a list of unique opening names
|
83 |
+
opening_names = df['name'].unique().tolist()
|
84 |
+
|
85 |
+
|
86 |
chat_interface = gr.ChatInterface(
|
87 |
fn=generate,
|
88 |
stop_btn=None,
|
|
|
96 |
)
|
97 |
|
98 |
|
99 |
+
with gr.Blocks(css=""".big-text {
|
100 |
+
font-size: 2px !important;
|
101 |
+
}""", fill_height=True) as demo:
|
102 |
gr.Markdown(DESCRIPTION)
|
103 |
|
104 |
play_match = Game()
|
|
|
110 |
with gr.Column():
|
111 |
chat_interface.render()
|
112 |
|
113 |
+
game_logs = gr.Label(label="Game Logs", elem_classes=["big-text"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
with gr.Row():
|
116 |
+
with gr.Column():
|
117 |
+
gr.Markdown("### Play a Match vs Gemma")
|
118 |
|
119 |
+
move_input = gr.Textbox(label="Enter your move in algebraic notation: (e.g., e4, Nf3, Bxc4)")
|
120 |
+
submit_move = gr.Button("Submit Move")
|
121 |
+
submit_move.click(play_match.generate_moves, inputs=move_input, outputs=[board_image, game_logs])
|
122 |
+
submit_move.click(lambda x: gr.update(value=''), [],[move_input])
|
123 |
|
124 |
+
reset_board = gr.Button("Reset Game")
|
125 |
+
reset_board.click(play_match.reset_board, outputs=board_image)
|
126 |
+
reset_board.click(lambda x: gr.update(value=''), [],[game_logs])
|
127 |
|
128 |
+
with gr.Column():
|
129 |
+
gr.Markdown("### Chess Openings Explorer")
|
130 |
+
|
131 |
+
opening_choice = gr.Dropdown(label="Choose a Chess Opening", choices=opening_names)
|
132 |
+
opening_output = gr.Textbox(label="Opening Details", lines=4)
|
133 |
+
opening_moves = gr.State()
|
134 |
+
|
135 |
+
opening_choice.change(fn=get_opening_details, inputs=opening_choice, outputs=opening_output)
|
136 |
+
opening_choice.change(fn=get_move_list, inputs=opening_choice, outputs=opening_moves)
|
137 |
+
|
138 |
+
|
139 |
+
load_opening = gr.Button("Load Opening")
|
140 |
+
load_opening.click(play_match.reset_board, outputs=board_image)
|
141 |
+
load_opening.click(play_match.load_opening, inputs=[opening_choice, opening_moves], outputs=game_logs)
|
142 |
+
|
143 |
if __name__ == "__main__":
|
144 |
demo.queue(max_size=20).launch()
|
chess_board.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
# import os
|
2 |
# os.environ["KERAS_BACKEND"] = "torch" # "jax", "torch" or "tensorflow"
|
3 |
|
4 |
-
import keras_nlp
|
5 |
-
import keras
|
6 |
-
import torch
|
7 |
|
8 |
import chess
|
9 |
import chess.svg
|
@@ -17,27 +17,29 @@ class Game:
|
|
17 |
self.counter = 0
|
18 |
self.arrow= None
|
19 |
|
20 |
-
self.model_id = 'kaggle://valentinbaltazar/gemma-chess/keras/gemma_2b_en_chess'
|
21 |
-
self.sampler = keras_nlp.samplers.TopKSampler(k=50, temperature=0.7)
|
22 |
-
self.model = keras_nlp.models.GemmaCausalLM.from_preset(self.model_id)
|
23 |
-
self.compile_model()
|
24 |
|
25 |
def compile_model(self):
|
26 |
self.model.compile(sampler=self.sampler)
|
27 |
|
28 |
-
def call_gemma(self):
|
29 |
template = "Instruction:\n{instruction}\n\nResponse:\n{response}"
|
30 |
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
output = self.model.generate(prompt, max_length=256)
|
37 |
-
|
38 |
-
gemma_move = output.split(' ')[-1].strip("'")
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
if self.make_move(gemma_move):
|
43 |
print(f'Gemma plays {self.sequence[-1]}! (Current Sequence: {self.sequence} {len(self.sequence)})')
|
@@ -54,7 +56,10 @@ class Game:
|
|
54 |
def gemma_moves(self):
|
55 |
# print(f"Gemma is thinking...(Current Sequence: {self.sequence} {len(self.sequence)})")
|
56 |
# time.sleep(3)
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
def player_moves(self, move):
|
60 |
return self.make_move(move)
|
@@ -105,6 +110,12 @@ class Game:
|
|
105 |
|
106 |
def get_move_logs(self):
|
107 |
return self.sequence
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
|
110 |
def main():
|
|
|
1 |
# import os
|
2 |
# os.environ["KERAS_BACKEND"] = "torch" # "jax", "torch" or "tensorflow"
|
3 |
|
4 |
+
# import keras_nlp
|
5 |
+
# import keras
|
6 |
+
# import torch
|
7 |
|
8 |
import chess
|
9 |
import chess.svg
|
|
|
17 |
self.counter = 0
|
18 |
self.arrow= None
|
19 |
|
20 |
+
# self.model_id = 'kaggle://valentinbaltazar/gemma-chess/keras/gemma_2b_en_chess'
|
21 |
+
# self.sampler = keras_nlp.samplers.TopKSampler(k=50, temperature=0.7)
|
22 |
+
# self.model = keras_nlp.models.GemmaCausalLM.from_preset(self.model_id)
|
23 |
+
# self.compile_model()
|
24 |
|
25 |
def compile_model(self):
|
26 |
self.model.compile(sampler=self.sampler)
|
27 |
|
28 |
+
def call_gemma(self, opening_move):
|
29 |
template = "Instruction:\n{instruction}\n\nResponse:\n{response}"
|
30 |
|
31 |
+
if opening_move:
|
32 |
+
gemma_move = opening_move
|
33 |
+
else:
|
34 |
+
template = "Instruction:\n{instruction}\n\nResponse:\n{response}"
|
35 |
|
36 |
+
prompt = template.format(
|
37 |
+
instruction=f"Predict the next chess move in the sequence {str(self.sequence)}",
|
38 |
+
response="",)
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# output = self.model.generate(prompt, max_length=256)
|
41 |
+
|
42 |
+
# gemma_move = output.split(' ')[-1].strip("'")
|
43 |
|
44 |
if self.make_move(gemma_move):
|
45 |
print(f'Gemma plays {self.sequence[-1]}! (Current Sequence: {self.sequence} {len(self.sequence)})')
|
|
|
56 |
def gemma_moves(self):
|
57 |
# print(f"Gemma is thinking...(Current Sequence: {self.sequence} {len(self.sequence)})")
|
58 |
# time.sleep(3)
|
59 |
+
if self.opening_moves and len(self.sequence)<len(self.opening_moves):
|
60 |
+
return self.call_gemma(self.opening_moves[len(self.sequence)])
|
61 |
+
else:
|
62 |
+
return self.call_gemma(None)
|
63 |
|
64 |
def player_moves(self, move):
|
65 |
return self.make_move(move)
|
|
|
110 |
|
111 |
def get_move_logs(self):
|
112 |
return self.sequence
|
113 |
+
|
114 |
+
def load_opening(self, opening_name, opening_moves):
|
115 |
+
self.opening = True
|
116 |
+
self.opening_name = opening_name
|
117 |
+
self.opening_moves = opening_moves
|
118 |
+
return f"Ok, lets play the {opening_name}! {opening_moves} Make your first move."
|
119 |
|
120 |
|
121 |
def main():
|