from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.vision.all import * import torchvision.transforms as transforms import torchvision.transforms as transforms from fastai.basics import * from fastai.vision import models from fastai.vision.all import * from fastai.metrics import * from fastai.data.all import * from fastai.callback import * from pathlib import Path import random import PIL #Definimos las funciones de transformacion que hemos creado en la practica para poder tratar los datos de entrada y que funcione bien device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def transform_image(image): my_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize( [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) image_aux = image return my_transforms(image_aux).unsqueeze(0).to(device) class TargetMaskConvertTransform(ItemTransform): def __init__(self): pass def encodes(self, x): img,mask = x #Convertimos a array mask = np.array(mask) mask[(mask!=255) & (mask!=150) & (mask!=76) & (mask!=74) & (mask!=29) & (mask!=25)]=0 mask[mask==255]=1 mask[mask==150]=2 mask[mask==76]=4 mask[mask==74]=4 mask[mask==29]=3 mask[mask==25]=3 # Back to PILMask mask = PILMask.create(mask) return img, mask from albumentations import ( Compose, OneOf, ElasticTransform, GridDistortion, OpticalDistortion, HorizontalFlip, Rotate, Transpose, CLAHE, ShiftScaleRotate ) def get_y_fn (x): return Path(str(x).replace("Images","Labels").replace("color","gt").replace(".jpg",".png")) class SegmentationAlbumentationsTransform(ItemTransform): split_idx = 0 def __init__(self, aug): self.aug = aug def encodes(self, x): img,mask = x aug = self.aug(image=np.array(img), mask=np.array(mask)) return PILImage.create(aug["image"]), PILMask.create(aug["mask"]) #Cargamos el modelo repo_id = "valintea/modelo-p3" learn = from_pretrained_fastai(repo_id) model = learn.model model = model.cpu() # Funcion de predicción def predict(img_ruta): img = PIL.Image.fromarray(img_ruta) image = transforms.Resize((480,640))(img) tensor = transform_image(image=image) model.to(device) with torch.no_grad(): outputs = model(tensor) outputs = torch.argmax(outputs,1) mask = np.array(outputs.cpu()) mask[mask==1]=255 mask[mask==2]=150 mask[mask==3]=29 mask[mask==4]=74 mask = np.reshape(mask,(480,640)) return Image.fromarray(mask.astype('uint8')) # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(480, 640)), outputs=gr.inputs.Image(shape=(480, 640)), examples=['color_188.jpg','color_155.jpg']).launch(share=False)