Modius-Agent-Performance / apr_visualization.py
gauravlochab
fix: update API base URL to secure endpoint
c79c221
raw
history blame
21.6 kB
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import random
from datetime import datetime, timedelta
import requests
import sys
import json
from typing import List, Dict, Any
# Global variable to store the data for reuse
global_df = None
# Configuration
API_BASE_URL = "https://afmdb.autonolas.tech"
def get_agent_type_by_name(type_name: str) -> Dict[str, Any]:
"""Get agent type by name"""
response = requests.get(f"{API_BASE_URL}/api/agent-types/name/{type_name}")
if response.status_code == 404:
print(f"Error: Agent type '{type_name}' not found")
return None
response.raise_for_status()
return response.json()
def get_attribute_definition_by_name(attr_name: str) -> Dict[str, Any]:
"""Get attribute definition by name"""
response = requests.get(f"{API_BASE_URL}/api/attributes/name/{attr_name}")
if response.status_code == 404:
print(f"Error: Attribute definition '{attr_name}' not found")
return None
response.raise_for_status()
return response.json()
def get_agents_by_type(type_id: int) -> List[Dict[str, Any]]:
"""Get all agents of a specific type"""
response = requests.get(f"{API_BASE_URL}/api/agent-types/{type_id}/agents/")
if response.status_code == 404:
print(f"No agents found for type ID {type_id}")
return []
response.raise_for_status()
return response.json()
def get_attribute_values_by_type_and_attr(agents: List[Dict[str, Any]], attr_def_id: int) -> List[Dict[str, Any]]:
"""Get all attribute values for a specific attribute definition across all agents of a given list"""
all_attributes = []
# For each agent, get their attributes and filter for the one we want
for agent in agents:
agent_id = agent["agent_id"]
# Call the /api/agents/{agent_id}/attributes/ endpoint
response = requests.get(f"{API_BASE_URL}/api/agents/{agent_id}/attributes/", params={"limit": 1000})
if response.status_code == 404:
print(f"No attributes found for agent ID {agent_id}")
continue
try:
response.raise_for_status()
agent_attrs = response.json()
# Filter for the specific attribute definition ID
filtered_attrs = [attr for attr in agent_attrs if attr.get("attr_def_id") == attr_def_id]
all_attributes.extend(filtered_attrs)
except requests.exceptions.RequestException as e:
print(f"Error fetching attributes for agent ID {agent_id}: {e}")
return all_attributes
def get_agent_name(agent_id: int, agents: List[Dict[str, Any]]) -> str:
"""Get agent name from agent ID"""
for agent in agents:
if agent["agent_id"] == agent_id:
return agent["agent_name"]
return "Unknown"
def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
"""Extract APR value and timestamp from JSON value"""
try:
# The APR value is stored in the json_value field
if attr["json_value"] is None:
return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False}
# If json_value is a string, parse it
if isinstance(attr["json_value"], str):
json_data = json.loads(attr["json_value"])
else:
json_data = attr["json_value"]
apr = json_data.get("apr")
timestamp = json_data.get("timestamp")
# Convert timestamp to datetime if it exists
timestamp_dt = None
if timestamp:
timestamp_dt = datetime.fromtimestamp(timestamp)
return {"apr": apr, "timestamp": timestamp_dt, "agent_id": attr["agent_id"], "is_dummy": False}
except (json.JSONDecodeError, KeyError, TypeError) as e:
print(f"Error parsing JSON value: {e}")
return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False}
def fetch_apr_data_from_db():
"""
Fetch APR data from database using the API.
"""
global global_df
try:
# Step 1: Find the Modius agent type
modius_type = get_agent_type_by_name("Modius")
if not modius_type:
print("Modius agent type not found, using placeholder data")
global_df = pd.DataFrame([])
return global_df
type_id = modius_type["type_id"]
# Step 2: Find the APR attribute definition
apr_attr_def = get_attribute_definition_by_name("APR")
if not apr_attr_def:
print("APR attribute definition not found, using placeholder data")
global_df = pd.DataFrame([])
return global_df
attr_def_id = apr_attr_def["attr_def_id"]
# Step 3: Get all agents of type Modius
modius_agents = get_agents_by_type(type_id)
if not modius_agents:
print("No agents of type 'Modius' found")
global_df = pd.DataFrame([])
return global_df
# Step 4: Fetch all APR values for Modius agents
apr_attributes = get_attribute_values_by_type_and_attr(modius_agents, attr_def_id)
if not apr_attributes:
print("No APR values found for 'Modius' agents")
global_df = pd.DataFrame([])
return global_df
# Step 5: Extract APR data
apr_data_list = []
for attr in apr_attributes:
apr_data = extract_apr_value(attr)
if apr_data["apr"] is not None and apr_data["timestamp"] is not None:
# Get agent name
agent_name = get_agent_name(attr["agent_id"], modius_agents)
# Add agent name to the data
apr_data["agent_name"] = agent_name
# Add is_dummy flag (all real data)
apr_data["is_dummy"] = False
# Mark negative values as "Performance" metrics
if apr_data["apr"] < 0:
apr_data["metric_type"] = "Performance"
else:
apr_data["metric_type"] = "APR"
apr_data_list.append(apr_data)
# Convert list of dictionaries to DataFrame
if not apr_data_list:
print("No valid APR data extracted")
global_df = pd.DataFrame([])
return global_df
global_df = pd.DataFrame(apr_data_list)
return global_df
except requests.exceptions.RequestException as e:
print(f"API request error: {e}")
global_df = pd.DataFrame([])
return global_df
except Exception as e:
print(f"Error fetching APR data: {e}")
global_df = pd.DataFrame([])
return global_df
def generate_apr_visualizations():
"""Generate APR visualizations with real data only (no dummy data)"""
global global_df
# Fetch data from database
df = fetch_apr_data_from_db()
# If we got no data at all, return placeholder figures
if df.empty:
print("No APR data available. Using fallback visualization.")
# Create empty visualizations with a message using Plotly
fig = go.Figure()
fig.add_annotation(
x=0.5, y=0.5,
text="No APR data available",
font=dict(size=20),
showarrow=False
)
fig.update_layout(
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
)
# Save as static files for reference
fig.write_html("modius_apr_per_agent_graph.html")
fig.write_image("modius_apr_per_agent_graph.png")
fig.write_html("modius_apr_combined_graph.html")
fig.write_image("modius_apr_combined_graph.png")
csv_file = None
return fig, fig, csv_file
# No longer generating dummy data
# Set global_df for access by other functions
global_df = df
# Save to CSV before creating visualizations
csv_file = save_to_csv(df)
# Create per-agent time series graph (returns figure object)
per_agent_fig = create_time_series_graph_per_agent(df)
# Create combined time series graph (returns figure object)
combined_fig = create_combined_time_series_graph(df)
return per_agent_fig, combined_fig, csv_file
def create_time_series_graph_per_agent(df):
"""Create a time series graph for each agent using Plotly"""
# Get unique agents
unique_agents = df['agent_id'].unique()
if len(unique_agents) == 0:
print("No agent data to plot")
fig = go.Figure()
fig.add_annotation(
text="No agent data available",
x=0.5, y=0.5,
showarrow=False, font=dict(size=20)
)
return fig
# Create a subplot figure for each agent
fig = make_subplots(rows=len(unique_agents), cols=1,
subplot_titles=[f"Agent: {df[df['agent_id'] == agent_id]['agent_name'].iloc[0]}"
for agent_id in unique_agents],
vertical_spacing=0.1)
# Plot data for each agent
for i, agent_id in enumerate(unique_agents):
agent_data = df[df['agent_id'] == agent_id].copy()
agent_name = agent_data['agent_name'].iloc[0]
row = i + 1
# Add zero line to separate APR and Performance
fig.add_shape(
type="line", line=dict(dash="solid", width=1.5, color="black"),
y0=0, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
row=row, col=1
)
# Add background colors
fig.add_shape(
type="rect", fillcolor="rgba(230, 243, 255, 0.3)", line=dict(width=0),
y0=0, y1=1000, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
row=row, col=1, layer="below"
)
fig.add_shape(
type="rect", fillcolor="rgba(255, 230, 230, 0.3)", line=dict(width=0),
y0=-1000, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
row=row, col=1, layer="below"
)
# Create separate dataframes for different data types
apr_data = agent_data[agent_data['metric_type'] == 'APR']
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
# Sort all data by timestamp for the line plots
combined_agent_data = agent_data.sort_values('timestamp')
# Add main line connecting all points
fig.add_trace(
go.Scatter(
x=combined_agent_data['timestamp'],
y=combined_agent_data['apr'],
mode='lines',
line=dict(color='purple', width=2),
name=f'{agent_name}',
legendgroup=agent_name,
showlegend=(i == 0), # Only show in legend once
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
),
row=row, col=1
)
# Add scatter points for APR values
if not apr_data.empty:
fig.add_trace(
go.Scatter(
x=apr_data['timestamp'],
y=apr_data['apr'],
mode='markers',
marker=dict(color='blue', size=10, symbol='circle'),
name='APR',
legendgroup='APR',
showlegend=(i == 0),
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<extra></extra>'
),
row=row, col=1
)
# Add scatter points for Performance values
if not perf_data.empty:
fig.add_trace(
go.Scatter(
x=perf_data['timestamp'],
y=perf_data['apr'],
mode='markers',
marker=dict(color='red', size=10, symbol='square'),
name='Performance',
legendgroup='Performance',
showlegend=(i == 0),
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<extra></extra>'
),
row=row, col=1
)
# Update axes
fig.update_xaxes(title_text="Time", row=row, col=1)
fig.update_yaxes(title_text="Value", row=row, col=1, gridcolor='rgba(0,0,0,0.1)')
# Update layout
fig.update_layout(
height=400 * len(unique_agents),
width=1000,
title_text="APR and Performance Values per Agent",
template="plotly_white",
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
),
margin=dict(r=20, l=20, t=30, b=20),
hovermode="closest"
)
# Save the figure (still useful for reference)
graph_file = "modius_apr_per_agent_graph.html"
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
# Also save as image for compatibility
img_file = "modius_apr_per_agent_graph.png"
fig.write_image(img_file)
print(f"Per-agent graph saved to {graph_file} and {img_file}")
# Return the figure object for direct use in Gradio
return fig
def create_combined_time_series_graph(df):
"""Create a combined time series graph for all agents using Plotly"""
if len(df) == 0:
print("No data to plot combined graph")
fig = go.Figure()
fig.add_annotation(
text="No data available",
x=0.5, y=0.5,
showarrow=False, font=dict(size=20)
)
return fig
# Create Plotly figure
fig = go.Figure()
# Get unique agents
unique_agents = df['agent_id'].unique()
# Define a color scale for different agents
colors = px.colors.qualitative.Plotly[:len(unique_agents)]
# Add background shapes for APR and Performance regions
min_time = df['timestamp'].min()
max_time = df['timestamp'].max()
# Add shape for APR region (above zero)
fig.add_shape(
type="rect",
fillcolor="rgba(230, 243, 255, 0.3)",
line=dict(width=0),
y0=0, y1=1000,
x0=min_time, x1=max_time,
layer="below"
)
# Add shape for Performance region (below zero)
fig.add_shape(
type="rect",
fillcolor="rgba(255, 230, 230, 0.3)",
line=dict(width=0),
y0=-1000, y1=0,
x0=min_time, x1=max_time,
layer="below"
)
# Add zero line
fig.add_shape(
type="line",
line=dict(dash="solid", width=1.5, color="black"),
y0=0, y1=0,
x0=min_time, x1=max_time
)
# Add data for each agent
for i, agent_id in enumerate(unique_agents):
agent_data = df[df['agent_id'] == agent_id].copy()
agent_name = agent_data['agent_name'].iloc[0]
color = colors[i % len(colors)]
# Sort the data by timestamp
agent_data = agent_data.sort_values('timestamp')
# Add the combined line for both APR and Performance
fig.add_trace(
go.Scatter(
x=agent_data['timestamp'],
y=agent_data['apr'],
mode='lines',
line=dict(color=color, width=2),
name=f'{agent_name}',
legendgroup=agent_name,
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
)
)
# Add scatter points for APR values
apr_data = agent_data[agent_data['metric_type'] == 'APR']
if not apr_data.empty:
fig.add_trace(
go.Scatter(
x=apr_data['timestamp'],
y=apr_data['apr'],
mode='markers',
marker=dict(color=color, symbol='circle', size=8),
name=f'{agent_name} APR',
legendgroup=agent_name,
showlegend=False,
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
)
)
# Add scatter points for Performance values
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
if not perf_data.empty:
fig.add_trace(
go.Scatter(
x=perf_data['timestamp'],
y=perf_data['apr'],
mode='markers',
marker=dict(color=color, symbol='square', size=8),
name=f'{agent_name} Perf',
legendgroup=agent_name,
showlegend=False,
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
)
)
# Update layout
fig.update_layout(
title="APR and Performance Values for All Agents",
xaxis_title="Time",
yaxis_title="Value",
template="plotly_white",
height=600,
width=1000,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
groupclick="toggleitem"
),
margin=dict(r=20, l=20, t=30, b=20),
hovermode="closest"
)
# Update axes
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)')
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)')
# Save the figure (still useful for reference)
graph_file = "modius_apr_combined_graph.html"
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
# Also save as image for compatibility
img_file = "modius_apr_combined_graph.png"
fig.write_image(img_file)
print(f"Combined graph saved to {graph_file} and {img_file}")
# Return the figure object for direct use in Gradio
return fig
def save_to_csv(df):
"""Save the APR data DataFrame to a CSV file and return the file path"""
if df.empty:
print("No APR data to save to CSV")
return None
# Define the CSV file path
csv_file = "modius_apr_values.csv"
# Save to CSV
df.to_csv(csv_file, index=False)
print(f"APR data saved to {csv_file}")
# Also generate a statistics CSV file
stats_df = generate_statistics_from_data(df)
stats_csv = "modius_apr_statistics.csv"
stats_df.to_csv(stats_csv, index=False)
print(f"Statistics saved to {stats_csv}")
return csv_file
def generate_statistics_from_data(df):
"""Generate statistics from the APR data"""
if df.empty:
return pd.DataFrame()
# Get unique agents
unique_agents = df['agent_id'].unique()
stats_list = []
# Generate per-agent statistics
for agent_id in unique_agents:
agent_data = df[df['agent_id'] == agent_id]
agent_name = agent_data['agent_name'].iloc[0]
# APR statistics
apr_data = agent_data[agent_data['metric_type'] == 'APR']
real_apr = apr_data[apr_data['is_dummy'] == False]
# Performance statistics
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
real_perf = perf_data[perf_data['is_dummy'] == False]
stats = {
'agent_id': agent_id,
'agent_name': agent_name,
'total_points': len(agent_data),
'apr_points': len(apr_data),
'performance_points': len(perf_data),
'real_apr_points': len(real_apr),
'real_performance_points': len(real_perf),
'avg_apr': apr_data['apr'].mean() if not apr_data.empty else None,
'avg_performance': perf_data['apr'].mean() if not perf_data.empty else None,
'max_apr': apr_data['apr'].max() if not apr_data.empty else None,
'min_apr': apr_data['apr'].min() if not apr_data.empty else None,
'latest_timestamp': agent_data['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not agent_data.empty else None
}
stats_list.append(stats)
# Generate overall statistics
apr_only = df[df['metric_type'] == 'APR']
perf_only = df[df['metric_type'] == 'Performance']
overall_stats = {
'agent_id': 'ALL',
'agent_name': 'All Agents',
'total_points': len(df),
'apr_points': len(apr_only),
'performance_points': len(perf_only),
'real_apr_points': len(apr_only[apr_only['is_dummy'] == False]),
'real_performance_points': len(perf_only[perf_only['is_dummy'] == False]),
'avg_apr': apr_only['apr'].mean() if not apr_only.empty else None,
'avg_performance': perf_only['apr'].mean() if not perf_only.empty else None,
'max_apr': apr_only['apr'].max() if not apr_only.empty else None,
'min_apr': apr_only['apr'].min() if not apr_only.empty else None,
'latest_timestamp': df['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not df.empty else None
}
stats_list.append(overall_stats)
return pd.DataFrame(stats_list)