Spaces:
Running
Running
gauravlochab
feat: add timezone adjustment function and enhance logging for timestamp handling
cba6d8a
import requests | |
import pandas as pd | |
import gradio as gr | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from plotly.subplots import make_subplots | |
from datetime import datetime, timedelta | |
import json | |
# Commenting out blockchain-related imports that cause loading issues | |
# from web3 import Web3 | |
import os | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.dates as mdates | |
import random | |
import logging | |
from typing import List, Dict, Any | |
# Comment out the import for now and replace with dummy functions | |
# from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations | |
# APR visualization functions integrated directly | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
logger = logging.getLogger(__name__) | |
# Global variable to store the data for reuse | |
global_df = None | |
# Configuration | |
API_BASE_URL = "https://afmdb.autonolas.tech" | |
# Add a timezone adjustment function at the top of the file after imports | |
def adjust_timestamp(timestamp_dt, hours_offset=0): | |
""" | |
Adjust a timestamp by the specified number of hours. | |
Used to correct for timezone differences between environments. | |
Args: | |
timestamp_dt: datetime object to adjust | |
hours_offset: number of hours to add (can be negative) | |
Returns: | |
Adjusted datetime object | |
""" | |
if timestamp_dt is None: | |
return None | |
return timestamp_dt + timedelta(hours=hours_offset) | |
def get_agent_type_by_name(type_name: str) -> Dict[str, Any]: | |
"""Get agent type by name""" | |
response = requests.get(f"{API_BASE_URL}/api/agent-types/name/{type_name}") | |
if response.status_code == 404: | |
logger.error(f"Agent type '{type_name}' not found") | |
return None | |
response.raise_for_status() | |
return response.json() | |
def get_attribute_definition_by_name(attr_name: str) -> Dict[str, Any]: | |
"""Get attribute definition by name""" | |
response = requests.get(f"{API_BASE_URL}/api/attributes/name/{attr_name}") | |
if response.status_code == 404: | |
logger.error(f"Attribute definition '{attr_name}' not found") | |
return None | |
response.raise_for_status() | |
return response.json() | |
def get_agents_by_type(type_id: int) -> List[Dict[str, Any]]: | |
"""Get all agents of a specific type""" | |
response = requests.get(f"{API_BASE_URL}/api/agent-types/{type_id}/agents/") | |
if response.status_code == 404: | |
logger.error(f"No agents found for type ID {type_id}") | |
return [] | |
response.raise_for_status() | |
return response.json() | |
def get_attribute_values_by_type_and_attr(agents: List[Dict[str, Any]], attr_def_id: int) -> List[Dict[str, Any]]: | |
"""Get all attribute values for a specific attribute definition across all agents of a given list""" | |
all_attributes = [] | |
# For each agent, get their attributes and filter for the one we want | |
for agent in agents: | |
agent_id = agent["agent_id"] | |
# Call the /api/agents/{agent_id}/attributes/ endpoint | |
response = requests.get(f"{API_BASE_URL}/api/agents/{agent_id}/attributes/", params={"limit": 1000}) | |
if response.status_code == 404: | |
logger.error(f"No attributes found for agent ID {agent_id}") | |
continue | |
try: | |
response.raise_for_status() | |
agent_attrs = response.json() | |
# Filter for the specific attribute definition ID | |
filtered_attrs = [attr for attr in agent_attrs if attr.get("attr_def_id") == attr_def_id] | |
all_attributes.extend(filtered_attrs) | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Error fetching attributes for agent ID {agent_id}: {e}") | |
return all_attributes | |
def get_agent_name(agent_id: int, agents: List[Dict[str, Any]]) -> str: | |
"""Get agent name from agent ID""" | |
for agent in agents: | |
if agent["agent_id"] == agent_id: | |
return agent["agent_name"] | |
return "Unknown" | |
def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]: | |
"""Extract APR value and timestamp from JSON value""" | |
try: | |
# The APR value is stored in the json_value field | |
if attr["json_value"] is None: | |
logger.warning(f"Null JSON value for agent_id: {attr.get('agent_id')}") | |
return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False} | |
# If json_value is a string, parse it | |
if isinstance(attr["json_value"], str): | |
logger.info(f"Parsing JSON string for agent_id: {attr.get('agent_id')}") | |
json_data = json.loads(attr["json_value"]) | |
else: | |
json_data = attr["json_value"] | |
apr = json_data.get("apr") | |
timestamp = json_data.get("timestamp") | |
logger.info(f"Raw timestamp from API: {timestamp}, type: {type(timestamp)}") | |
# Convert timestamp to datetime if it exists | |
timestamp_dt = None | |
if timestamp: | |
# Just use the standard conversion without timezone specification | |
timestamp_dt = datetime.fromtimestamp(timestamp) | |
logger.info(f"Converted timestamp: {timestamp_dt}") | |
# Log timezone information | |
try: | |
local_now = datetime.now() | |
logger.info(f"Current local time: {local_now}") | |
logger.info(f"Difference between API time and local time (hours): {(timestamp_dt - local_now).total_seconds() / 3600:.2f}") | |
except Exception as e: | |
logger.error(f"Error calculating time difference: {e}") | |
else: | |
logger.warning(f"No timestamp in data for agent_id: {attr.get('agent_id')}") | |
return {"apr": apr, "timestamp": timestamp_dt, "agent_id": attr["agent_id"], "is_dummy": False} | |
except (json.JSONDecodeError, KeyError, TypeError) as e: | |
logger.error(f"Error parsing JSON value: {e} for agent_id: {attr.get('agent_id')}") | |
return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False} | |
def fetch_apr_data_from_db(): | |
""" | |
Fetch APR data from database using the API. | |
""" | |
global global_df | |
# Set the timezone offset between local and HF environments | |
# Based on the logs, we're seeing ~6 hour difference | |
# If HF is showing earlier times than local, use a negative value | |
TIMEZONE_OFFSET_HOURS = -3 # Adjust based on observed differences | |
try: | |
# Step 1: Find the Modius agent type | |
modius_type = get_agent_type_by_name("Modius") | |
if not modius_type: | |
logger.error("Modius agent type not found, using placeholder data") | |
global_df = pd.DataFrame([]) | |
return global_df | |
type_id = modius_type["type_id"] | |
# Step 2: Find the APR attribute definition | |
apr_attr_def = get_attribute_definition_by_name("APR") | |
if not apr_attr_def: | |
logger.error("APR attribute definition not found, using placeholder data") | |
global_df = pd.DataFrame([]) | |
return global_df | |
attr_def_id = apr_attr_def["attr_def_id"] | |
# Step 3: Get all agents of type Modius | |
modius_agents = get_agents_by_type(type_id) | |
if not modius_agents: | |
logger.error("No agents of type 'Modius' found") | |
global_df = pd.DataFrame([]) | |
return global_df | |
# Step 4: Fetch all APR values for Modius agents | |
apr_attributes = get_attribute_values_by_type_and_attr(modius_agents, attr_def_id) | |
if not apr_attributes: | |
logger.error("No APR values found for 'Modius' agents") | |
global_df = pd.DataFrame([]) | |
return global_df | |
# Step 5: Extract APR data | |
apr_data_list = [] | |
for attr in apr_attributes: | |
apr_data = extract_apr_value(attr) | |
if apr_data["apr"] is not None and apr_data["timestamp"] is not None: | |
# Apply timezone adjustment | |
apr_data["timestamp"] = adjust_timestamp(apr_data["timestamp"], TIMEZONE_OFFSET_HOURS) | |
logger.info(f"Adjusted timestamp: {apr_data['timestamp']}") | |
# Get agent name | |
agent_name = get_agent_name(attr["agent_id"], modius_agents) | |
# Add agent name to the data | |
apr_data["agent_name"] = agent_name | |
# Add is_dummy flag (all real data) | |
apr_data["is_dummy"] = False | |
# Mark negative values as "Performance" metrics | |
if apr_data["apr"] < 0: | |
apr_data["metric_type"] = "Performance" | |
else: | |
apr_data["metric_type"] = "APR" | |
apr_data_list.append(apr_data) | |
# Convert list of dictionaries to DataFrame | |
if not apr_data_list: | |
logger.error("No valid APR data extracted") | |
global_df = pd.DataFrame([]) | |
return global_df | |
global_df = pd.DataFrame(apr_data_list) | |
# Log timestamp ranges for debugging | |
if not global_df.empty: | |
logger.info(f"DataFrame timestamp min: {global_df['timestamp'].min()}") | |
logger.info(f"DataFrame timestamp max: {global_df['timestamp'].max()}") | |
return global_df | |
except requests.exceptions.RequestException as e: | |
logger.error(f"API request error: {e}") | |
global_df = pd.DataFrame([]) | |
return global_df | |
except Exception as e: | |
logger.error(f"Error fetching APR data: {e}") | |
global_df = pd.DataFrame([]) | |
return global_df | |
def generate_apr_visualizations(): | |
"""Generate APR visualizations with real data only (no dummy data)""" | |
global global_df | |
# Fetch data from database | |
df = fetch_apr_data_from_db() | |
# If we got no data at all, return placeholder figures | |
if df.empty: | |
logger.info("No APR data available. Using fallback visualization.") | |
# Create empty visualizations with a message using Plotly | |
fig = go.Figure() | |
fig.add_annotation( | |
x=0.5, y=0.5, | |
text="No APR data available", | |
font=dict(size=20), | |
showarrow=False | |
) | |
fig.update_layout( | |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False) | |
) | |
# Save as static file for reference | |
fig.write_html("modius_apr_combined_graph.html") | |
fig.write_image("modius_apr_combined_graph.png") | |
csv_file = None | |
return fig, csv_file | |
# No longer generating dummy data | |
# Set global_df for access by other functions | |
global_df = df | |
# Save to CSV before creating visualizations | |
csv_file = save_to_csv(df) | |
# Only create combined time series graph | |
combined_fig = create_combined_time_series_graph(df) | |
return combined_fig, csv_file | |
def create_time_series_graph_per_agent(df): | |
"""Create a time series graph for each agent using Plotly""" | |
# Get unique agents | |
unique_agents = df['agent_id'].unique() | |
if len(unique_agents) == 0: | |
logger.error("No agent data to plot") | |
fig = go.Figure() | |
fig.add_annotation( | |
text="No agent data available", | |
x=0.5, y=0.5, | |
showarrow=False, font=dict(size=20) | |
) | |
return fig | |
# Create a subplot figure for each agent | |
fig = make_subplots(rows=len(unique_agents), cols=1, | |
subplot_titles=[f"Agent: {df[df['agent_id'] == agent_id]['agent_name'].iloc[0]}" | |
for agent_id in unique_agents], | |
vertical_spacing=0.1) | |
# Plot data for each agent | |
for i, agent_id in enumerate(unique_agents): | |
agent_data = df[df['agent_id'] == agent_id].copy() | |
agent_name = agent_data['agent_name'].iloc[0] | |
row = i + 1 | |
# Add zero line to separate APR and Performance | |
fig.add_shape( | |
type="line", line=dict(dash="solid", width=1.5, color="black"), | |
y0=0, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(), | |
row=row, col=1 | |
) | |
# Add background colors | |
fig.add_shape( | |
type="rect", fillcolor="rgba(230, 243, 255, 0.3)", line=dict(width=0), | |
y0=0, y1=1000, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(), | |
row=row, col=1, layer="below" | |
) | |
fig.add_shape( | |
type="rect", fillcolor="rgba(255, 230, 230, 0.3)", line=dict(width=0), | |
y0=-1000, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(), | |
row=row, col=1, layer="below" | |
) | |
# Create separate dataframes for different data types | |
apr_data = agent_data[agent_data['metric_type'] == 'APR'] | |
perf_data = agent_data[agent_data['metric_type'] == 'Performance'] | |
# Sort all data by timestamp for the line plots | |
combined_agent_data = agent_data.sort_values('timestamp') | |
# Add main line connecting all points | |
fig.add_trace( | |
go.Scatter( | |
x=combined_agent_data['timestamp'], | |
y=combined_agent_data['apr'], | |
mode='lines', | |
line=dict(color='purple', width=2), | |
name=f'{agent_name}', | |
legendgroup=agent_name, | |
showlegend=(i == 0), # Only show in legend once | |
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<extra></extra>' | |
), | |
row=row, col=1 | |
) | |
# Add scatter points for APR values | |
if not apr_data.empty: | |
fig.add_trace( | |
go.Scatter( | |
x=apr_data['timestamp'], | |
y=apr_data['apr'], | |
mode='markers', | |
marker=dict(color='blue', size=10, symbol='circle'), | |
name='APR', | |
legendgroup='APR', | |
showlegend=(i == 0), | |
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<extra></extra>' | |
), | |
row=row, col=1 | |
) | |
# Add scatter points for Performance values | |
if not perf_data.empty: | |
fig.add_trace( | |
go.Scatter( | |
x=perf_data['timestamp'], | |
y=perf_data['apr'], | |
mode='markers', | |
marker=dict(color='red', size=10, symbol='square'), | |
name='Performance', | |
legendgroup='Performance', | |
showlegend=(i == 0), | |
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<extra></extra>' | |
), | |
row=row, col=1 | |
) | |
# Update axes | |
fig.update_xaxes(title_text="Time", row=row, col=1) | |
fig.update_yaxes(title_text="Value", row=row, col=1, gridcolor='rgba(0,0,0,0.1)') | |
# Update layout | |
fig.update_layout( | |
height=400 * len(unique_agents), | |
width=1000, | |
title_text="APR and Performance Values per Agent", | |
template="plotly_white", | |
legend=dict( | |
orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1 | |
), | |
margin=dict(r=20, l=20, t=30, b=20), | |
hovermode="closest" | |
) | |
# Save the figure (still useful for reference) | |
graph_file = "modius_apr_per_agent_graph.html" | |
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False) | |
# Also save as image for compatibility | |
img_file = "modius_apr_per_agent_graph.png" | |
fig.write_image(img_file) | |
logger.info(f"Per-agent graph saved to {graph_file} and {img_file}") | |
# Return the figure object for direct use in Gradio | |
return fig | |
def create_combined_time_series_graph(df): | |
"""Create a combined time series graph for all agents using Plotly""" | |
if len(df) == 0: | |
logger.error("No data to plot combined graph") | |
fig = go.Figure() | |
fig.add_annotation( | |
text="No data available", | |
x=0.5, y=0.5, | |
showarrow=False, font=dict(size=20) | |
) | |
return fig | |
# Debug: Print detailed info about the dataframe | |
logger.info(f"Combined graph data - shape: {df.shape}") | |
logger.info(f"Timestamp min: {df['timestamp'].min()}, timezone info: {getattr(df['timestamp'].min(), 'tzinfo', None)}") | |
logger.info(f"Timestamp max: {df['timestamp'].max()}, timezone info: {getattr(df['timestamp'].max(), 'tzinfo', None)}") | |
logger.info("Platform/Environment info:") | |
logger.info(f"Host: {os.uname().nodename if hasattr(os, 'uname') else 'Unknown'}") | |
logger.info(f"System: {os.name}") | |
# Create a timestamp reference to identify the environment | |
current_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') | |
logger.info(f"Environment check - current time: {current_time}") | |
# Add a title annotation with environment information to help identify which environment is which | |
environment_tag = "LOCAL" if os.environ.get("GRADIO_SERVER_PORT") is None else "HUGGINGFACE" | |
logger.info(f"Environment tag: {environment_tag}") | |
# Debug: Print every data point with full details to verify consistency | |
for idx, row in df.iterrows(): | |
logger.info(f"Data point {idx}: agent={row['agent_name']}, time={row['timestamp']}, apr={row['apr']}, type={row['metric_type']}") | |
# Create Plotly figure | |
fig = go.Figure() | |
# Get unique agents | |
unique_agents = df['agent_id'].unique() | |
logger.info(f"Unique agents: {[df[df['agent_id'] == agent_id]['agent_name'].iloc[0] for agent_id in unique_agents]}") | |
# Define a color scale for different agents | |
colors = px.colors.qualitative.Plotly[:len(unique_agents)] | |
# Add background shapes for APR and Performance regions | |
min_time = df['timestamp'].min() | |
max_time = df['timestamp'].max() | |
# Add shape for APR region (above zero) | |
fig.add_shape( | |
type="rect", | |
fillcolor="rgba(230, 243, 255, 0.3)", | |
line=dict(width=0), | |
y0=0, y1=1000, | |
x0=min_time, x1=max_time, | |
layer="below" | |
) | |
# Add shape for Performance region (below zero) | |
fig.add_shape( | |
type="rect", | |
fillcolor="rgba(255, 230, 230, 0.3)", | |
line=dict(width=0), | |
y0=-1000, y1=0, | |
x0=min_time, x1=max_time, | |
layer="below" | |
) | |
# Add zero line | |
fig.add_shape( | |
type="line", | |
line=dict(dash="solid", width=1.5, color="black"), | |
y0=0, y1=0, | |
x0=min_time, x1=max_time | |
) | |
# Add data for each agent | |
for i, agent_id in enumerate(unique_agents): | |
agent_data = df[df['agent_id'] == agent_id].copy() | |
agent_name = agent_data['agent_name'].iloc[0] | |
color = colors[i % len(colors)] | |
# Sort the data by timestamp | |
agent_data = agent_data.sort_values('timestamp') | |
logger.info(f"Agent {agent_name} data points: {len(agent_data)}") | |
logger.info(f"Agent {agent_name} timestamps: {agent_data['timestamp'].tolist()}") | |
# Add the combined line for both APR and Performance | |
fig.add_trace( | |
go.Scatter( | |
x=agent_data['timestamp'], | |
y=agent_data['apr'], | |
mode='lines', | |
line=dict(color=color, width=2), | |
name=f'{agent_name}', | |
legendgroup=agent_name, | |
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>' | |
) | |
) | |
# Add scatter points for APR values | |
apr_data = agent_data[agent_data['metric_type'] == 'APR'] | |
logger.info(f"Agent {agent_name} APR points: {len(apr_data)}") | |
if not apr_data.empty: | |
fig.add_trace( | |
go.Scatter( | |
x=apr_data['timestamp'], | |
y=apr_data['apr'], | |
mode='markers', | |
marker=dict(color=color, symbol='circle', size=8), | |
name=f'{agent_name} APR', | |
legendgroup=agent_name, | |
showlegend=False, | |
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>' | |
) | |
) | |
# Add scatter points for Performance values | |
perf_data = agent_data[agent_data['metric_type'] == 'Performance'] | |
logger.info(f"Agent {agent_name} Performance points: {len(perf_data)}") | |
if not perf_data.empty: | |
fig.add_trace( | |
go.Scatter( | |
x=perf_data['timestamp'], | |
y=perf_data['apr'], | |
mode='markers', | |
marker=dict(color=color, symbol='square', size=8), | |
name=f'{agent_name} Perf', | |
legendgroup=agent_name, | |
showlegend=False, | |
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>' | |
) | |
) | |
# Update layout | |
fig.update_layout( | |
title=f"APR and Performance Values for All Agents - {environment_tag} - {current_time}", | |
xaxis_title="Time", | |
yaxis_title="Value", | |
template="plotly_white", | |
height=600, | |
width=1000, | |
legend=dict( | |
orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1, | |
groupclick="toggleitem" | |
), | |
margin=dict(r=20, l=20, t=50, b=20), # Increased top margin for title | |
hovermode="closest", | |
annotations=[ | |
dict( | |
text=f"Environment: {environment_tag} | Server Time: {current_time}", | |
xref="paper", yref="paper", | |
x=0.5, y=1.05, # Positioned above the main title | |
showarrow=False, | |
font=dict(size=10, color="gray") | |
) | |
] | |
) | |
# Update axes | |
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)') | |
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)') | |
# Save the figure (still useful for reference) | |
graph_file = "modius_apr_combined_graph.html" | |
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False) | |
# Also save as image for compatibility | |
img_file = "modius_apr_combined_graph.png" | |
fig.write_image(img_file) | |
logger.info(f"Combined graph saved to {graph_file} and {img_file}") | |
# Return the figure object for direct use in Gradio | |
return fig | |
def save_to_csv(df): | |
"""Save the APR data DataFrame to a CSV file and return the file path""" | |
if df.empty: | |
logger.error("No APR data to save to CSV") | |
return None | |
# Define the CSV file path | |
csv_file = "modius_apr_values.csv" | |
# Save to CSV | |
df.to_csv(csv_file, index=False) | |
logger.info(f"APR data saved to {csv_file}") | |
# Also generate a statistics CSV file | |
stats_df = generate_statistics_from_data(df) | |
stats_csv = "modius_apr_statistics.csv" | |
stats_df.to_csv(stats_csv, index=False) | |
logger.info(f"Statistics saved to {stats_csv}") | |
return csv_file | |
def generate_statistics_from_data(df): | |
"""Generate statistics from the APR data""" | |
if df.empty: | |
return pd.DataFrame() | |
# Get unique agents | |
unique_agents = df['agent_id'].unique() | |
stats_list = [] | |
# Generate per-agent statistics | |
for agent_id in unique_agents: | |
agent_data = df[df['agent_id'] == agent_id] | |
agent_name = agent_data['agent_name'].iloc[0] | |
# APR statistics | |
apr_data = agent_data[agent_data['metric_type'] == 'APR'] | |
real_apr = apr_data[apr_data['is_dummy'] == False] | |
# Performance statistics | |
perf_data = agent_data[agent_data['metric_type'] == 'Performance'] | |
real_perf = perf_data[perf_data['is_dummy'] == False] | |
stats = { | |
'agent_id': agent_id, | |
'agent_name': agent_name, | |
'total_points': len(agent_data), | |
'apr_points': len(apr_data), | |
'performance_points': len(perf_data), | |
'real_apr_points': len(real_apr), | |
'real_performance_points': len(real_perf), | |
'avg_apr': apr_data['apr'].mean() if not apr_data.empty else None, | |
'avg_performance': perf_data['apr'].mean() if not perf_data.empty else None, | |
'max_apr': apr_data['apr'].max() if not apr_data.empty else None, | |
'min_apr': apr_data['apr'].min() if not apr_data.empty else None, | |
'latest_timestamp': agent_data['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not agent_data.empty else None | |
} | |
stats_list.append(stats) | |
# Generate overall statistics | |
apr_only = df[df['metric_type'] == 'APR'] | |
perf_only = df[df['metric_type'] == 'Performance'] | |
overall_stats = { | |
'agent_id': 'ALL', | |
'agent_name': 'All Agents', | |
'total_points': len(df), | |
'apr_points': len(apr_only), | |
'performance_points': len(perf_only), | |
'real_apr_points': len(apr_only[apr_only['is_dummy'] == False]), | |
'real_performance_points': len(perf_only[perf_only['is_dummy'] == False]), | |
'avg_apr': apr_only['apr'].mean() if not apr_only.empty else None, | |
'avg_performance': perf_only['apr'].mean() if not perf_only.empty else None, | |
'max_apr': apr_only['apr'].max() if not apr_only.empty else None, | |
'min_apr': apr_only['apr'].min() if not apr_only.empty else None, | |
'latest_timestamp': df['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not df.empty else None | |
} | |
stats_list.append(overall_stats) | |
return pd.DataFrame(stats_list) | |
# Create dummy functions for the commented out imports | |
def create_transcation_visualizations(): | |
"""Dummy implementation that returns a placeholder graph""" | |
fig = go.Figure() | |
fig.add_annotation( | |
text="Blockchain data loading disabled - placeholder visualization", | |
x=0.5, y=0.5, xref="paper", yref="paper", | |
showarrow=False, font=dict(size=20) | |
) | |
return fig | |
def create_active_agents_visualizations(): | |
"""Dummy implementation that returns a placeholder graph""" | |
fig = go.Figure() | |
fig.add_annotation( | |
text="Blockchain data loading disabled - placeholder visualization", | |
x=0.5, y=0.5, xref="paper", yref="paper", | |
showarrow=False, font=dict(size=20) | |
) | |
return fig | |
# Comment out the blockchain connection code | |
""" | |
# Load environment variables from .env file | |
# RPC URLs | |
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL') | |
MODE_RPC_URL = os.getenv('MODE_RPC_URL') | |
# Initialize Web3 instances | |
web3_instances = { | |
'optimism': Web3(Web3.HTTPProvider(OPTIMISM_RPC_URL)), | |
'mode': Web3(Web3.HTTPProvider(MODE_RPC_URL)) | |
} | |
# Contract addresses for service registries | |
contract_addresses = { | |
'optimism': '0x3d77596beb0f130a4415df3D2D8232B3d3D31e44', | |
'mode': '0x3C1fF68f5aa342D296d4DEe4Bb1cACCA912D95fE' | |
} | |
# Load the ABI from the provided JSON file | |
with open('./contracts/service_registry_abi.json', 'r') as abi_file: | |
contract_abi = json.load(abi_file) | |
# Create the contract instances | |
service_registries = { | |
chain_name: web3.eth.contract(address=contract_addresses[chain_name], abi=contract_abi) | |
for chain_name, web3 in web3_instances.items() | |
} | |
# Check if connections are successful | |
for chain_name, web3_instance in web3_instances.items(): | |
if not web3_instance.is_connected(): | |
raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.") | |
else: | |
print(f"Successfully connected to the {chain_name.capitalize()} network.") | |
""" | |
# Dummy blockchain functions to replace the commented ones | |
def get_transfers(integrator: str, wallet: str) -> str: | |
"""Dummy function that returns an empty result""" | |
return {"transfers": []} | |
def fetch_and_aggregate_transactions(): | |
"""Dummy function that returns empty data""" | |
return [], {} | |
# Function to parse the transaction data and prepare it for visualization | |
def process_transactions_and_agents(data): | |
"""Dummy function that returns empty dataframes""" | |
df_transactions = pd.DataFrame() | |
df_agents = pd.DataFrame(columns=['date', 'agent_count']) | |
df_agents_weekly = pd.DataFrame() | |
return df_transactions, df_agents, df_agents_weekly | |
# Function to create visualizations based on the metrics | |
def create_visualizations(): | |
""" | |
# Commenting out the original visualization code temporarily for debugging | |
transactions_data = fetch_and_aggregate_transactions() | |
df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data) | |
# Fetch daily value locked data | |
df_tvl = pd.read_csv('daily_value_locked.csv') | |
# Calculate total value locked per chain per day | |
df_tvl["total_value_locked_usd"] = df_tvl["amount0_usd"] + df_tvl["amount1_usd"] | |
df_tvl_daily = df_tvl.groupby(["date", "chain_name"])["total_value_locked_usd"].sum().reset_index() | |
df_tvl_daily['date'] = pd.to_datetime(df_tvl_daily['date']) | |
# Filter out dates with zero total value locked | |
df_tvl_daily = df_tvl_daily[df_tvl_daily["total_value_locked_usd"] > 0] | |
chain_name_map = { | |
"mode": "Mode", | |
"base": "Base", | |
"ethereum": "Ethereum", | |
"optimism": "Optimism" | |
} | |
df_tvl_daily["chain_name"] = df_tvl_daily["chain_name"].map(chain_name_map) | |
# Plot total value locked | |
fig_tvl = px.bar( | |
df_tvl_daily, | |
x="date", | |
y="total_value_locked_usd", | |
color="chain_name", | |
opacity=0.7, | |
title="Total Volume Invested in Pools in Different Chains Daily", | |
labels={"date": "Date","chain_name": "Transaction Chain", "total_value_locked_usd": "Total Volume Invested (USD)"}, | |
barmode='stack', | |
color_discrete_map={ | |
"Mode": "orange", | |
"Base": "purple", | |
"Ethereum": "darkgreen", | |
"Optimism": "blue" | |
} | |
) | |
fig_tvl.update_layout( | |
xaxis_title="Date", | |
yaxis=dict(tickmode='linear', tick0=0, dtick=4), | |
xaxis=dict( | |
tickmode='array', | |
tickvals=df_tvl_daily['date'], | |
ticktext=df_tvl_daily['date'].dt.strftime('%b %d'), | |
tickangle=-45, | |
), | |
bargap=0.6, # Increase gap between bar groups (0-1) | |
bargroupgap=0.1, # Decrease gap between bars in a group (0-1) | |
height=600, | |
width=1200, # Specify width to prevent bars from being too wide | |
showlegend=True, | |
template='plotly_white' | |
) | |
fig_tvl.update_xaxes(tickformat="%b %d") | |
chain_name_map = { | |
10: "Optimism", | |
8453: "Base", | |
1: "Ethereum", | |
34443: "Mode" | |
} | |
df_transactions["sending_chain"] = df_transactions["sending_chain"].map(chain_name_map) | |
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].map(chain_name_map) | |
df_transactions["sending_chain"] = df_transactions["sending_chain"].astype(str) | |
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].astype(str) | |
df_transactions['date'] = pd.to_datetime(df_transactions['date']) | |
df_transactions["is_swap"] = df_transactions.apply(lambda x: x["sending_chain"] == x["receiving_chain"], axis=1) | |
swaps_per_chain = df_transactions[df_transactions["is_swap"]].groupby(["date", "sending_chain"]).size().reset_index(name="swap_count") | |
fig_swaps_chain = px.bar( | |
swaps_per_chain, | |
x="date", | |
y="swap_count", | |
color="sending_chain", | |
title="Chain Daily Activity: Swaps", | |
labels={"sending_chain": "Transaction Chain", "swap_count": "Daily Swap Nr"}, | |
barmode="stack", | |
opacity=0.7, | |
color_discrete_map={ | |
"Optimism": "blue", | |
"Ethereum": "darkgreen", | |
"Base": "purple", | |
"Mode": "orange" | |
} | |
) | |
fig_swaps_chain.update_layout( | |
xaxis_title="Date", | |
yaxis_title="Daily Swap Count", | |
yaxis=dict(tickmode='linear', tick0=0, dtick=1), | |
xaxis=dict( | |
tickmode='array', | |
tickvals=[d for d in swaps_per_chain['date']], | |
ticktext=[d.strftime('%m-%d') for d in swaps_per_chain['date']], | |
tickangle=-45, | |
), | |
bargap=0.6, | |
bargroupgap=0.1, | |
height=600, | |
width=1200, | |
margin=dict(l=50, r=50, t=50, b=50), | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
y=0.99, | |
xanchor="right", | |
x=0.99 | |
), | |
template='plotly_white' | |
) | |
fig_swaps_chain.update_xaxes(tickformat="%m-%d") | |
df_transactions["is_bridge"] = df_transactions.apply(lambda x: x["sending_chain"] != x["receiving_chain"], axis=1) | |
bridges_per_chain = df_transactions[df_transactions["is_bridge"]].groupby(["date", "sending_chain"]).size().reset_index(name="bridge_count") | |
fig_bridges_chain = px.bar( | |
bridges_per_chain, | |
x="date", | |
y="bridge_count", | |
color="sending_chain", | |
title="Chain Daily Activity: Bridges", | |
labels={"sending_chain": "Transaction Chain", "bridge_count": "Daily Bridge Nr"}, | |
barmode="stack", | |
opacity=0.7, | |
color_discrete_map={ | |
"Optimism": "blue", | |
"Ethereum": "darkgreen", | |
"Base": "purple", | |
"Mode": "orange" | |
} | |
) | |
fig_bridges_chain.update_layout( | |
xaxis_title="Date", | |
yaxis_title="Daily Bridge Count", | |
yaxis=dict(tickmode='linear', tick0=0, dtick=1), | |
xaxis=dict( | |
tickmode='array', | |
tickvals=[d for d in bridges_per_chain['date']], | |
ticktext=[d.strftime('%m-%d') for d in bridges_per_chain['date']], | |
tickangle=-45, | |
), | |
bargap=0.6, | |
bargroupgap=0.1, | |
height=600, | |
width=1200, | |
margin=dict(l=50, r=50, t=50, b=50), | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
y=0.99, | |
xanchor="right", | |
x=0.99 | |
), | |
template='plotly_white' | |
) | |
fig_bridges_chain.update_xaxes(tickformat="%m-%d") | |
df_agents['date'] = pd.to_datetime(df_agents['date']) | |
daily_agents_df = df_agents.groupby('date').agg({'agent_count': 'sum'}).reset_index() | |
daily_agents_df.rename(columns={'agent_count': 'daily_agent_count'}, inplace=True) | |
# Sort by date to ensure proper running total calculation | |
daily_agents_df = daily_agents_df.sort_values('date') | |
# Create week column | |
daily_agents_df['week'] = daily_agents_df['date'].dt.to_period('W').apply(lambda r: r.start_time) | |
# Calculate running total within each week | |
daily_agents_df['running_weekly_total'] = daily_agents_df.groupby('week')['daily_agent_count'].cumsum() | |
# Create final merged dataframe | |
weekly_merged_df = daily_agents_df.copy() | |
adjustment_date = pd.to_datetime('2024-11-15') | |
weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'daily_agent_count'] -= 1 | |
weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'running_weekly_total'] -= 1 | |
fig_agents_registered = go.Figure(data=[ | |
go.Bar( | |
name='Daily nr of Registered Agents', | |
x=weekly_merged_df['date'].dt.strftime("%b %d"), | |
y=weekly_merged_df['daily_agent_count'], | |
opacity=0.7, | |
marker_color='blue' | |
), | |
go.Bar( | |
name='Weekly Nr of Registered Agents', | |
x=weekly_merged_df['date'].dt.strftime("%b %d"), | |
y=weekly_merged_df['running_weekly_total'], | |
opacity=0.7, | |
marker_color='purple' | |
) | |
]) | |
fig_agents_registered.update_layout( | |
xaxis_title='Date', | |
yaxis_title='Number of Agents', | |
title="Nr of Agents Registered", | |
barmode='group', | |
yaxis=dict(tickmode='linear', tick0=0, dtick=1), | |
xaxis=dict( | |
categoryorder='array', | |
categoryarray=weekly_merged_df['date'].dt.strftime("%b %d"), | |
tickangle=-45 | |
), | |
bargap=0.3, | |
height=600, | |
width=1200, | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
xanchor="right", | |
), | |
template='plotly_white', | |
) | |
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl | |
""" | |
# Placeholder figures for testing | |
fig_swaps_chain = go.Figure() | |
fig_swaps_chain.add_annotation( | |
text="Blockchain data loading disabled - placeholder visualization", | |
x=0.5, y=0.5, xref="paper", yref="paper", | |
showarrow=False, font=dict(size=20) | |
) | |
fig_bridges_chain = go.Figure() | |
fig_bridges_chain.add_annotation( | |
text="Blockchain data loading disabled - placeholder visualization", | |
x=0.5, y=0.5, xref="paper", yref="paper", | |
showarrow=False, font=dict(size=20) | |
) | |
fig_agents_registered = go.Figure() | |
fig_agents_registered.add_annotation( | |
text="Blockchain data loading disabled - placeholder visualization", | |
x=0.5, y=0.5, xref="paper", yref="paper", | |
showarrow=False, font=dict(size=20) | |
) | |
fig_tvl = go.Figure() | |
fig_tvl.add_annotation( | |
text="Blockchain data loading disabled - placeholder visualization", | |
x=0.5, y=0.5, xref="paper", yref="paper", | |
showarrow=False, font=dict(size=20) | |
) | |
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered, fig_tvl | |
# Gradio interface | |
def dashboard(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# Valory APR Metrics") | |
# APR Metrics tab - the only tab | |
with gr.Tab("APR Metrics"): | |
with gr.Column(): | |
refresh_btn = gr.Button("Refresh APR Data") | |
# Create container for plotly figure (combined graph only) | |
combined_graph = gr.Plot(label="APR for All Agents") | |
# Function to update the graph | |
def update_apr_graph(): | |
# Generate visualization and get figure object directly | |
combined_fig, _ = generate_apr_visualizations() | |
return combined_fig | |
# Set up the button click event | |
refresh_btn.click( | |
fn=update_apr_graph, | |
inputs=[], | |
outputs=[combined_graph] | |
) | |
# Initialize the graph on load | |
# We'll use placeholder figure initially | |
import plotly.graph_objects as go | |
placeholder_fig = go.Figure() | |
placeholder_fig.add_annotation( | |
text="Click 'Refresh APR Data' to load APR graph", | |
x=0.5, y=0.5, | |
showarrow=False, | |
font=dict(size=15) | |
) | |
combined_graph.value = placeholder_fig | |
return demo | |
# Launch the dashboard | |
if __name__ == "__main__": | |
dashboard().launch() | |