Spaces:
Running
Running
import requests | |
import pandas as pd | |
import gradio as gr | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from plotly.subplots import make_subplots | |
from datetime import datetime, timedelta | |
import json | |
# Commenting out blockchain-related imports that cause loading issues | |
# from web3 import Web3 | |
import os | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.dates as mdates | |
import random | |
import logging | |
from typing import List, Dict, Any, Optional | |
# Comment out the import for now and replace with dummy functions | |
# from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations | |
# APR visualization functions integrated directly | |
# Set up logging with appropriate verbosity | |
logging.basicConfig( | |
level=logging.INFO, # Use INFO level instead of DEBUG to reduce verbosity | |
format="%(asctime)s - %(levelname)s - %(message)s", | |
handlers=[ | |
logging.FileHandler("app_debug.log"), # Log to file for persistence | |
logging.StreamHandler() # Also log to console | |
] | |
) | |
logger = logging.getLogger(__name__) | |
# Reduce third-party library logging | |
logging.getLogger("urllib3").setLevel(logging.WARNING) | |
logging.getLogger("httpx").setLevel(logging.WARNING) | |
logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
# Log the startup information | |
logger.info("============= APPLICATION STARTING =============") | |
logger.info(f"Running from directory: {os.getcwd()}") | |
# Global variables to store the data for reuse | |
global_df = None | |
global_roi_df = None | |
# Configuration | |
API_BASE_URL = "https://afmdb.autonolas.tech" | |
logger.info(f"Using API endpoint: {API_BASE_URL}") | |
def get_agent_type_by_name(type_name: str) -> Dict[str, Any]: | |
"""Get agent type by name""" | |
url = f"{API_BASE_URL}/api/agent-types/name/{type_name}" | |
logger.debug(f"Calling API: {url}") | |
try: | |
response = requests.get(url) | |
logger.debug(f"Response status: {response.status_code}") | |
if response.status_code == 404: | |
logger.error(f"Agent type '{type_name}' not found") | |
return None | |
response.raise_for_status() | |
result = response.json() | |
logger.debug(f"Agent type response: {result}") | |
return result | |
except Exception as e: | |
logger.error(f"Error in get_agent_type_by_name: {e}") | |
return None | |
def get_attribute_definition_by_name(attr_name: str) -> Dict[str, Any]: | |
"""Get attribute definition by name""" | |
url = f"{API_BASE_URL}/api/attributes/name/{attr_name}" | |
logger.debug(f"Calling API: {url}") | |
try: | |
response = requests.get(url) | |
logger.debug(f"Response status: {response.status_code}") | |
if response.status_code == 404: | |
logger.error(f"Attribute definition '{attr_name}' not found") | |
return None | |
response.raise_for_status() | |
result = response.json() | |
logger.debug(f"Attribute definition response: {result}") | |
return result | |
except Exception as e: | |
logger.error(f"Error in get_attribute_definition_by_name: {e}") | |
return None | |
def get_agents_by_type(type_id: int) -> List[Dict[str, Any]]: | |
"""Get all agents of a specific type""" | |
url = f"{API_BASE_URL}/api/agent-types/{type_id}/agents/" | |
logger.debug(f"Calling API: {url}") | |
try: | |
response = requests.get(url) | |
logger.debug(f"Response status: {response.status_code}") | |
if response.status_code == 404: | |
logger.error(f"No agents found for type ID {type_id}") | |
return [] | |
response.raise_for_status() | |
result = response.json() | |
logger.debug(f"Agents count: {len(result)}") | |
logger.debug(f"First few agents: {result[:2] if result else []}") | |
return result | |
except Exception as e: | |
logger.error(f"Error in get_agents_by_type: {e}") | |
return [] | |
def get_attribute_values_by_type_and_attr(agents: List[Dict[str, Any]], attr_def_id: int) -> List[Dict[str, Any]]: | |
"""Get all attribute values for a specific attribute definition across all agents of a given list""" | |
all_attributes = [] | |
logger.debug(f"Getting attributes for {len(agents)} agents with attr_def_id: {attr_def_id}") | |
# For each agent, get their attributes and filter for the one we want | |
for agent in agents: | |
agent_id = agent["agent_id"] | |
# Call the /api/agents/{agent_id}/attributes/ endpoint | |
url = f"{API_BASE_URL}/api/agents/{agent_id}/attributes/" | |
logger.debug(f"Calling API for agent {agent_id}: {url}") | |
try: | |
response = requests.get(url, params={"limit": 1000}) | |
if response.status_code == 404: | |
logger.error(f"No attributes found for agent ID {agent_id}") | |
continue | |
response.raise_for_status() | |
agent_attrs = response.json() | |
logger.debug(f"Agent {agent_id} has {len(agent_attrs)} attributes") | |
# Filter for the specific attribute definition ID | |
filtered_attrs = [attr for attr in agent_attrs if attr.get("attr_def_id") == attr_def_id] | |
logger.debug(f"Agent {agent_id} has {len(filtered_attrs)} APR attributes") | |
if filtered_attrs: | |
logger.debug(f"Sample attribute for agent {agent_id}: {filtered_attrs[0]}") | |
all_attributes.extend(filtered_attrs) | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Error fetching attributes for agent ID {agent_id}: {e}") | |
logger.info(f"Total APR attributes found across all agents: {len(all_attributes)}") | |
return all_attributes | |
def get_agent_name(agent_id: int, agents: List[Dict[str, Any]]) -> str: | |
"""Get agent name from agent ID""" | |
for agent in agents: | |
if agent["agent_id"] == agent_id: | |
return agent["agent_name"] | |
return "Unknown" | |
def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]: | |
"""Extract APR value, adjusted APR value, ROI value, and timestamp from JSON value""" | |
try: | |
agent_id = attr.get("agent_id", "unknown") | |
logger.debug(f"Extracting APR value for agent {agent_id}") | |
# The APR value is stored in the json_value field | |
if attr["json_value"] is None: | |
logger.debug(f"Agent {agent_id}: json_value is None") | |
return {"apr": None, "adjusted_apr": None, "roi": None, "timestamp": None, "agent_id": agent_id, "is_dummy": False} | |
# If json_value is a string, parse it | |
if isinstance(attr["json_value"], str): | |
logger.debug(f"Agent {agent_id}: json_value is string, parsing") | |
json_data = json.loads(attr["json_value"]) | |
else: | |
json_data = attr["json_value"] | |
apr = json_data.get("apr") | |
adjusted_apr = json_data.get("adjusted_apr") # Extract adjusted_apr if present | |
timestamp = json_data.get("timestamp") | |
# Extract ROI (f_i_ratio) from calculation_metrics if it exists | |
roi = None | |
if "calculation_metrics" in json_data and json_data["calculation_metrics"] is not None: | |
roi = json_data["calculation_metrics"].get("f_i_ratio") | |
logger.debug(f"Agent {agent_id}: Raw APR value: {apr}, adjusted APR value: {adjusted_apr}, ROI value: {roi}, timestamp: {timestamp}") | |
# Convert timestamp to datetime if it exists | |
timestamp_dt = None | |
if timestamp: | |
timestamp_dt = datetime.fromtimestamp(timestamp) | |
result = { | |
"apr": apr, | |
"adjusted_apr": adjusted_apr, | |
"roi": roi, | |
"timestamp": timestamp_dt, | |
"agent_id": agent_id, | |
"is_dummy": False | |
} | |
logger.debug(f"Agent {agent_id}: Extracted result: {result}") | |
return result | |
except (json.JSONDecodeError, KeyError, TypeError) as e: | |
logger.error(f"Error parsing JSON value: {e} for agent_id: {attr.get('agent_id')}") | |
logger.error(f"Problematic json_value: {attr.get('json_value')}") | |
return {"apr": None, "adjusted_apr": None, "roi": None, "timestamp": None, "agent_id": attr.get('agent_id'), "is_dummy": False} | |
def fetch_apr_data_from_db(): | |
""" | |
Fetch APR data from database using the API. | |
""" | |
global global_df | |
global global_roi_df | |
logger.info("==== Starting APR data fetch ====") | |
try: | |
# Step 1: Find the Modius agent type | |
logger.info("Finding Modius agent type") | |
modius_type = get_agent_type_by_name("Modius") | |
if not modius_type: | |
logger.error("Modius agent type not found, using placeholder data") | |
global_df = pd.DataFrame([]) | |
return global_df | |
type_id = modius_type["type_id"] | |
logger.info(f"Found Modius agent type with ID: {type_id}") | |
# Step 2: Find the APR attribute definition | |
logger.info("Finding APR attribute definition") | |
apr_attr_def = get_attribute_definition_by_name("APR") | |
if not apr_attr_def: | |
logger.error("APR attribute definition not found, using placeholder data") | |
global_df = pd.DataFrame([]) | |
return global_df | |
attr_def_id = apr_attr_def["attr_def_id"] | |
logger.info(f"Found APR attribute definition with ID: {attr_def_id}") | |
# Step 3: Get all agents of type Modius | |
logger.info(f"Getting all agents of type Modius (type_id: {type_id})") | |
modius_agents = get_agents_by_type(type_id) | |
if not modius_agents: | |
logger.error("No agents of type 'Modius' found") | |
global_df = pd.DataFrame([]) | |
return global_df | |
logger.info(f"Found {len(modius_agents)} Modius agents") | |
logger.debug(f"Modius agents: {[{'agent_id': a['agent_id'], 'agent_name': a['agent_name']} for a in modius_agents]}") | |
# Step 4: Fetch all APR values for Modius agents | |
logger.info(f"Fetching APR values for all Modius agents (attr_def_id: {attr_def_id})") | |
apr_attributes = get_attribute_values_by_type_and_attr(modius_agents, attr_def_id) | |
if not apr_attributes: | |
logger.error("No APR values found for 'Modius' agents") | |
global_df = pd.DataFrame([]) | |
return global_df | |
logger.info(f"Found {len(apr_attributes)} APR attributes total") | |
# Step 5: Extract APR and ROI data | |
logger.info("Extracting APR and ROI data from attributes") | |
apr_data_list = [] | |
roi_data_list = [] | |
for attr in apr_attributes: | |
data = extract_apr_value(attr) | |
if data["timestamp"] is not None: | |
# Get agent name | |
agent_name = get_agent_name(attr["agent_id"], modius_agents) | |
# Add agent name to the data | |
data["agent_name"] = agent_name | |
# Add is_dummy flag (all real data) | |
data["is_dummy"] = False | |
# Process APR data | |
if data["apr"] is not None: | |
# Include all APR values (including negative ones) EXCEPT zero and -100 | |
if data["apr"] != 0 and data["apr"] != -100: | |
apr_entry = data.copy() | |
apr_entry["metric_type"] = "APR" | |
logger.debug(f"Agent {agent_name} ({attr['agent_id']}): APR value: {data['apr']}") | |
# Add to the APR data list | |
apr_data_list.append(apr_entry) | |
else: | |
# Log that we're skipping zero or -100 values | |
logger.debug(f"Skipping APR value for agent {agent_name} ({attr['agent_id']}): {data['apr']} (zero or -100)") | |
# Process ROI data | |
if data["roi"] is not None: | |
# Include all ROI values except extreme outliers | |
if data["roi"] > -10 and data["roi"] < 10: # Filter extreme outliers | |
roi_entry = { | |
"roi": data["roi"], | |
"timestamp": data["timestamp"], | |
"agent_id": data["agent_id"], | |
"agent_name": agent_name, | |
"is_dummy": False, | |
"metric_type": "ROI" | |
} | |
logger.debug(f"Agent {agent_name} ({attr['agent_id']}): ROI value: {data['roi']}") | |
# Add to the ROI data list | |
roi_data_list.append(roi_entry) | |
else: | |
# Log that we're skipping extreme outlier values | |
logger.debug(f"Skipping ROI value for agent {agent_name} ({attr['agent_id']}): {data['roi']} (extreme outlier)") | |
logger.info(f"Extracted {len(apr_data_list)} valid APR data points and {len(roi_data_list)} valid ROI data points") | |
# Added debug for adjusted APR data after May 10th | |
may_10_2025 = datetime(2025, 5, 10) | |
after_may_10 = [d for d in apr_data_list if d['timestamp'] >= may_10_2025] | |
with_adjusted_after_may_10 = [d for d in after_may_10 if d['adjusted_apr'] is not None] | |
logger.info(f"Data points after May 10th, 2025: {len(after_may_10)}") | |
logger.info(f"Data points with adjusted_apr after May 10th, 2025: {len(with_adjusted_after_may_10)}") | |
# Log detailed information about when data began | |
first_adjusted = None | |
if with_adjusted_after_may_10: | |
first_adjusted_after = min(with_adjusted_after_may_10, key=lambda x: x['timestamp']) | |
logger.info(f"First adjusted_apr after May 10th: {first_adjusted_after['timestamp']} (Agent: {first_adjusted_after['agent_id']})") | |
# Check all data for first adjusted_apr | |
all_with_adjusted = [d for d in apr_data_list if d['adjusted_apr'] is not None] | |
if all_with_adjusted: | |
first_adjusted = min(all_with_adjusted, key=lambda x: x['timestamp']) | |
logger.info(f"First adjusted_apr ever: {first_adjusted['timestamp']} (Agent: {first_adjusted['agent_id']})") | |
last_adjusted = max(all_with_adjusted, key=lambda x: x['timestamp']) | |
logger.info(f"Last adjusted_apr ever: {last_adjusted['timestamp']} (Agent: {last_adjusted['agent_id']})") | |
# Calculate overall coverage | |
adjusted_ratio = len(all_with_adjusted) / len(apr_data_list) * 100 | |
logger.info(f"Overall adjusted_apr coverage: {adjusted_ratio:.2f}% ({len(all_with_adjusted)}/{len(apr_data_list)} records)") | |
# Log per-agent adjusted APR statistics | |
agent_stats = {} | |
for record in apr_data_list: | |
agent_id = record['agent_id'] | |
has_adjusted = record['adjusted_apr'] is not None | |
if agent_id not in agent_stats: | |
agent_stats[agent_id] = {'total': 0, 'adjusted': 0} | |
agent_stats[agent_id]['total'] += 1 | |
if has_adjusted: | |
agent_stats[agent_id]['adjusted'] += 1 | |
# Log stats for agents with meaningful data | |
for agent_id, stats in agent_stats.items(): | |
if stats['total'] > 0: | |
coverage = (stats['adjusted'] / stats['total']) * 100 | |
if coverage > 0: # Only log agents that have at least some adjusted data | |
logger.info(f"Agent {agent_id}: {coverage:.2f}% adjusted coverage ({stats['adjusted']}/{stats['total']} records)") | |
# Check for gaps in adjusted APR data | |
for agent_id in agent_stats: | |
# Get all records for this agent | |
agent_records = [r for r in apr_data_list if r['agent_id'] == agent_id] | |
# Sort by timestamp | |
agent_records.sort(key=lambda x: x['timestamp']) | |
# Find where adjusted APR starts and if there are gaps | |
has_adjusted = False | |
gap_count = 0 | |
streak_length = 0 | |
for record in agent_records: | |
if record['adjusted_apr'] is not None: | |
if not has_adjusted: | |
has_adjusted = True | |
logger.info(f"Agent {agent_id}: First adjusted APR at {record['timestamp']}") | |
streak_length += 1 | |
elif has_adjusted: | |
# We had adjusted data but now it's missing | |
gap_count += 1 | |
if streak_length > 0: | |
logger.warning(f"Agent {agent_id}: Gap in adjusted APR data after {streak_length} consecutive records") | |
streak_length = 0 | |
if gap_count > 0: | |
logger.warning(f"Agent {agent_id}: Found {gap_count} gaps in adjusted APR data") | |
elif has_adjusted: | |
logger.info(f"Agent {agent_id}: Continuous adjusted APR data with no gaps") | |
# Provide summary statistics | |
agents_with_data = sum(1 for stats in agent_stats.values() if stats['adjusted'] > 0) | |
agents_with_gaps = sum(1 for agent_id in agent_stats if | |
any(apr_data_list[i]['agent_id'] == agent_id and apr_data_list[i]['adjusted_apr'] is not None and | |
i+1 < len(apr_data_list) and apr_data_list[i+1]['agent_id'] == agent_id and | |
apr_data_list[i+1]['adjusted_apr'] is None | |
for i in range(len(apr_data_list)-1))) | |
logger.info(f"ADJUSTED APR SUMMARY: {agents_with_data}/{len(agent_stats)} agents have adjusted APR data") | |
if agents_with_gaps > 0: | |
logger.warning(f"ATTENTION: {agents_with_gaps} agents have gaps in their adjusted APR data") | |
logger.warning("These gaps may cause discontinuities in the adjusted APR graph") | |
else: | |
logger.info("No gaps detected in adjusted APR data - graph should be continuous") | |
if len(with_adjusted_after_may_10) == 0 and len(after_may_10) > 0: | |
logger.warning("No adjusted_apr values found after May 10th, 2025 despite having APR data") | |
# Log agent IDs with missing adjusted_apr after May 10th | |
agents_after_may_10 = set(d['agent_id'] for d in after_may_10) | |
logger.info(f"Agents with data after May 10th: {agents_after_may_10}") | |
# Check these same agents before May 10th | |
before_may_10 = [d for d in apr_data_list if d['timestamp'] < may_10_2025] | |
agents_with_adjusted_before = {d['agent_id'] for d in before_may_10 if d['adjusted_apr'] is not None} | |
# Agents that had adjusted_apr before but not after | |
missing_adjusted = agents_with_adjusted_before.intersection(agents_after_may_10) | |
if missing_adjusted: | |
logger.warning(f"Agents that had adjusted_apr before May 10th but not after: {missing_adjusted}") | |
# Find the last valid adjusted_apr date for these agents | |
for agent_id in missing_adjusted: | |
agent_data = [d for d in before_may_10 if d['agent_id'] == agent_id and d['adjusted_apr'] is not None] | |
if agent_data: | |
last_entry = max(agent_data, key=lambda d: d['timestamp']) | |
logger.info(f"Agent {agent_id}: Last adjusted_apr on {last_entry['timestamp']} with value {last_entry['adjusted_apr']}") | |
# Look at the first entry after the cutoff without adjusted_apr | |
agent_after = [d for d in after_may_10 if d['agent_id'] == agent_id] | |
if agent_after: | |
first_after = min(agent_after, key=lambda d: d['timestamp']) | |
logger.info(f"Agent {agent_id}: First entry after cutoff on {first_after['timestamp']} missing adjusted_apr") | |
# If the agent data has the 'adjusted_apr_key' field, log that info | |
if 'adjusted_apr_key' in first_after: | |
logger.info(f"Agent {agent_id}: Key used for adjusted_apr: {first_after['adjusted_apr_key']}") | |
# Add debug logic to check for any adjusted_apr after May 10th and which agents have it | |
elif len(with_adjusted_after_may_10) > 0: | |
logger.info("Found adjusted_apr values after May 10th, 2025") | |
# Group by agent and log | |
agent_counts = {} | |
for item in with_adjusted_after_may_10: | |
agent_id = item['agent_id'] | |
if agent_id in agent_counts: | |
agent_counts[agent_id] += 1 | |
else: | |
agent_counts[agent_id] = 1 | |
logger.info(f"Agents with adjusted_apr after May 10th: {agent_counts}") | |
# Log adjusted_apr keys used | |
keys_used = {item.get('adjusted_apr_key') for item in with_adjusted_after_may_10 if 'adjusted_apr_key' in item} | |
if keys_used: | |
logger.info(f"Keys used for adjusted_apr after May 10th: {keys_used}") | |
# Convert to DataFrames | |
if not apr_data_list: | |
logger.error("No valid APR data extracted") | |
global_df = pd.DataFrame([]) | |
else: | |
# Convert list of dictionaries to DataFrame for APR | |
global_df = pd.DataFrame(apr_data_list) | |
if not roi_data_list: | |
logger.error("No valid ROI data extracted") | |
global_roi_df = pd.DataFrame([]) | |
else: | |
# Convert list of dictionaries to DataFrame for ROI | |
global_roi_df = pd.DataFrame(roi_data_list) | |
# Log the resulting dataframe | |
logger.info(f"Created DataFrame with {len(global_df)} rows") | |
logger.info(f"DataFrame columns: {global_df.columns.tolist()}") | |
logger.info(f"APR statistics: min={global_df['apr'].min()}, max={global_df['apr'].max()}, mean={global_df['apr'].mean()}") | |
# Log adjusted APR statistics if available | |
if 'adjusted_apr' in global_df.columns and global_df['adjusted_apr'].notna().any(): | |
logger.info(f"Adjusted APR statistics: min={global_df['adjusted_apr'].min()}, max={global_df['adjusted_apr'].max()}, mean={global_df['adjusted_apr'].mean()}") | |
logger.info(f"Number of records with adjusted_apr: {global_df['adjusted_apr'].notna().sum()} out of {len(global_df)}") | |
# Log the difference between APR and adjusted APR | |
valid_rows = global_df[global_df['adjusted_apr'].notna()] | |
if not valid_rows.empty: | |
avg_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).mean() | |
max_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).max() | |
min_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).min() | |
logger.info(f"APR vs. adjusted APR difference: avg={avg_diff:.2f}, min={min_diff:.2f}, max={max_diff:.2f}") | |
# All values are APR type (excluding zero and -100 values) | |
logger.info("All values are APR type (excluding zero and -100 values)") | |
logger.info(f"Agents count: {global_df['agent_name'].value_counts().to_dict()}") | |
# Log the entire dataframe for debugging | |
logger.debug("Final DataFrame contents:") | |
for idx, row in global_df.iterrows(): | |
logger.debug(f"Row {idx}: {row.to_dict()}") | |
# Add this at the end, right before returning | |
logger.info("Analyzing adjusted_apr data availability...") | |
log_adjusted_apr_availability(global_df) | |
return global_df, global_roi_df | |
except requests.exceptions.RequestException as e: | |
logger.error(f"API request error: {e}") | |
global_df = pd.DataFrame([]) | |
global_roi_df = pd.DataFrame([]) | |
return global_df, global_roi_df | |
except Exception as e: | |
logger.error(f"Error fetching APR data: {e}") | |
logger.exception("Exception traceback:") | |
global_df = pd.DataFrame([]) | |
global_roi_df = pd.DataFrame([]) | |
return global_df, global_roi_df | |
def log_adjusted_apr_availability(df): | |
""" | |
Analyzes and logs detailed information about adjusted_apr data availability. | |
Args: | |
df: DataFrame containing the APR data with adjusted_apr column | |
""" | |
if df.empty or 'adjusted_apr' not in df.columns: | |
logger.warning("No adjusted_apr data available for analysis") | |
return | |
# Get only rows with valid adjusted_apr values | |
has_adjusted = df[df['adjusted_apr'].notna()] | |
if has_adjusted.empty: | |
logger.warning("No valid adjusted_apr values found in the dataset") | |
return | |
# 1. When did adjusted_apr data start? | |
first_adjusted = has_adjusted['timestamp'].min() | |
last_adjusted = has_adjusted['timestamp'].max() | |
logger.info(f"ADJUSTED APR SUMMARY: First data point: {first_adjusted}") | |
logger.info(f"ADJUSTED APR SUMMARY: Last data point: {last_adjusted}") | |
logger.info(f"ADJUSTED APR SUMMARY: Data spans {(last_adjusted - first_adjusted).days} days") | |
# Calculate coverage percentage | |
total_records = len(df) | |
records_with_adjusted = len(has_adjusted) | |
coverage_pct = (records_with_adjusted / total_records) * 100 if total_records > 0 else 0 | |
logger.info(f"ADJUSTED APR SUMMARY: {records_with_adjusted} out of {total_records} records have adjusted_apr ({coverage_pct:.2f}%)") | |
# 2. How many agents are providing adjusted_apr? | |
agents_with_adjusted = has_adjusted['agent_id'].unique() | |
logger.info(f"ADJUSTED APR SUMMARY: {len(agents_with_adjusted)} agents providing adjusted_apr") | |
logger.info(f"ADJUSTED APR SUMMARY: Agents providing adjusted_apr: {list(agents_with_adjusted)}") | |
# 3. May 10th cutoff analysis | |
may_10_2025 = datetime(2025, 5, 10) | |
before_cutoff = df[df['timestamp'] < may_10_2025] | |
after_cutoff = df[df['timestamp'] >= may_10_2025] | |
if not before_cutoff.empty and not after_cutoff.empty: | |
before_with_adjusted = before_cutoff['adjusted_apr'].notna().sum() | |
before_pct = (before_with_adjusted / len(before_cutoff)) * 100 | |
after_with_adjusted = after_cutoff['adjusted_apr'].notna().sum() | |
after_pct = (after_with_adjusted / len(after_cutoff)) * 100 | |
logger.info(f"ADJUSTED APR SUMMARY: Before May 10th: {before_with_adjusted}/{len(before_cutoff)} records with adjusted_apr ({before_pct:.2f}%)") | |
logger.info(f"ADJUSTED APR SUMMARY: After May 10th: {after_with_adjusted}/{len(after_cutoff)} records with adjusted_apr ({after_pct:.2f}%)") | |
# Check which agents had data before and after | |
agents_before = set(before_cutoff[before_cutoff['adjusted_apr'].notna()]['agent_id'].unique()) | |
agents_after = set(after_cutoff[after_cutoff['adjusted_apr'].notna()]['agent_id'].unique()) | |
missing_after = agents_before - agents_after | |
if missing_after: | |
logger.warning(f"ADJUSTED APR SUMMARY: {len(missing_after)} agents stopped providing adjusted_apr after May 10th: {list(missing_after)}") | |
new_after = agents_after - agents_before | |
if new_after: | |
logger.info(f"ADJUSTED APR SUMMARY: {len(new_after)} agents started providing adjusted_apr after May 10th: {list(new_after)}") | |
# 4. Find date ranges for missing adjusted_apr | |
# Group by agent to analyze per-agent data availability | |
logger.info("=== DETAILED AGENT ANALYSIS ===") | |
for agent_id in df['agent_id'].unique(): | |
agent_data = df[df['agent_id'] == agent_id] | |
agent_name = agent_data['agent_name'].iloc[0] if not agent_data.empty else f"Agent {agent_id}" | |
# Get the valid adjusted_apr values for this agent | |
agent_adjusted = agent_data[agent_data['adjusted_apr'].notna()] | |
if agent_adjusted.empty: | |
logger.info(f"Agent {agent_name} (ID: {agent_id}): No adjusted_apr data available") | |
continue | |
# Get the date range for this agent's data | |
agent_start = agent_data['timestamp'].min() | |
agent_end = agent_data['timestamp'].max() | |
# Get the date range for adjusted_apr data | |
adjusted_start = agent_adjusted['timestamp'].min() | |
adjusted_end = agent_adjusted['timestamp'].max() | |
total_agent_records = len(agent_data) | |
agent_with_adjusted = len(agent_adjusted) | |
coverage_pct = (agent_with_adjusted / total_agent_records) * 100 if total_agent_records > 0 else 0 | |
logger.info(f"Agent {agent_name} (ID: {agent_id}): {agent_with_adjusted}/{total_agent_records} records with adjusted_apr ({coverage_pct:.2f}%)") | |
logger.info(f"Agent {agent_name} (ID: {agent_id}): APR data from {agent_start} to {agent_end}") | |
logger.info(f"Agent {agent_name} (ID: {agent_id}): Adjusted APR data from {adjusted_start} to {adjusted_end}") | |
# Calculate if this agent had data before/after May 10th | |
if not before_cutoff.empty and not after_cutoff.empty: | |
agent_before = before_cutoff[before_cutoff['agent_id'] == agent_id] | |
agent_after = after_cutoff[after_cutoff['agent_id'] == agent_id] | |
has_before = not agent_before.empty and agent_before['adjusted_apr'].notna().any() | |
has_after = not agent_after.empty and agent_after['adjusted_apr'].notna().any() | |
if has_before and not has_after: | |
last_date = agent_before[agent_before['adjusted_apr'].notna()]['timestamp'].max() | |
logger.warning(f"Agent {agent_name} (ID: {agent_id}): Stopped providing adjusted_apr after May 10th. Last data point: {last_date}") | |
elif not has_before and has_after: | |
first_date = agent_after[agent_after['adjusted_apr'].notna()]['timestamp'].min() | |
logger.info(f"Agent {agent_name} (ID: {agent_id}): Started providing adjusted_apr after May 10th. First data point: {first_date}") | |
# Check for gaps in adjusted_apr (periods of 24+ hours without data) | |
if len(agent_adjusted) < 2: | |
continue | |
# Sort by timestamp | |
sorted_data = agent_adjusted.sort_values('timestamp') | |
# Calculate time differences between consecutive data points | |
time_diffs = sorted_data['timestamp'].diff() | |
# Find gaps larger than 24 hours | |
gaps = sorted_data[time_diffs > pd.Timedelta(hours=24)] | |
if not gaps.empty: | |
logger.info(f"Agent {agent_name} (ID: {agent_id}): Found {len(gaps)} gaps in adjusted_apr data") | |
# Log the gaps | |
for i, row in gaps.iterrows(): | |
# Find the previous timestamp before the gap | |
prev_idx = sorted_data.index.get_loc(i) - 1 | |
prev_time = sorted_data.iloc[prev_idx]['timestamp'] if prev_idx >= 0 else None | |
if prev_time: | |
gap_start = prev_time | |
gap_end = row['timestamp'] | |
gap_duration = gap_end - gap_start | |
logger.info(f"Agent {agent_name} (ID: {agent_id}): Missing adjusted_apr from {gap_start} to {gap_end} ({gap_duration.days} days, {gap_duration.seconds//3600} hours)") | |
def generate_apr_visualizations(): | |
"""Generate APR visualizations with real data only (no dummy data)""" | |
global global_df | |
# Fetch data from database | |
df, _ = fetch_apr_data_from_db() | |
# If we got no data at all, return placeholder figures | |
if df.empty: | |
logger.info("No APR data available. Using fallback visualization.") | |
# Create empty visualizations with a message using Plotly | |
fig = go.Figure() | |
fig.add_annotation( | |
x=0.5, y=0.5, | |
text="No APR data available", | |
font=dict(size=20), | |
showarrow=False | |
) | |
fig.update_layout( | |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False) | |
) | |
# Save as static file for reference | |
fig.write_html("modius_apr_combined_graph.html") | |
fig.write_image("modius_apr_combined_graph.png") | |
csv_file = None | |
return fig, csv_file | |
# No longer generating dummy data | |
# Set global_df for access by other functions | |
global_df = df | |
# Save to CSV before creating visualizations | |
csv_file = save_to_csv(df) | |
# Only create combined time series graph | |
combined_fig = create_combined_time_series_graph(df) | |
return combined_fig, csv_file | |
def generate_roi_visualizations(): | |
"""Generate ROI visualizations with real data only (no dummy data)""" | |
global global_roi_df | |
# Fetch data from database if not already fetched | |
if global_roi_df is None or global_roi_df.empty: | |
_, df_roi = fetch_apr_data_from_db() | |
else: | |
df_roi = global_roi_df | |
# If we got no data at all, return placeholder figures | |
if df_roi.empty: | |
logger.info("No ROI data available. Using fallback visualization.") | |
# Create empty visualizations with a message using Plotly | |
fig = go.Figure() | |
fig.add_annotation( | |
x=0.5, y=0.5, | |
text="No ROI data available", | |
font=dict(size=20), | |
showarrow=False | |
) | |
fig.update_layout( | |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False) | |
) | |
# Save as static file for reference | |
fig.write_html("modius_roi_graph.html") | |
fig.write_image("modius_roi_graph.png") | |
csv_file = None | |
return fig, csv_file | |
# Set global_roi_df for access by other functions | |
global_roi_df = df_roi | |
# Save to CSV before creating visualizations | |
csv_file = save_roi_to_csv(df_roi) | |
# Create combined time series graph for ROI | |
combined_fig = create_combined_roi_time_series_graph(df_roi) | |
return combined_fig, csv_file | |
def create_combined_roi_time_series_graph(df): | |
"""Create a time series graph showing average ROI values across all agents""" | |
if len(df) == 0: | |
logger.error("No data to plot combined ROI graph") | |
fig = go.Figure() | |
fig.add_annotation( | |
text="No ROI data available", | |
x=0.5, y=0.5, | |
showarrow=False, font=dict(size=20) | |
) | |
return fig | |
# Define fixed start date (February 1, 2025) | |
fixed_start_date = datetime(2025, 2, 1) | |
logger.info(f"Using fixed start date for ROI runtime calculation: {fixed_start_date}") | |
# Calculate runtime for each agent from fixed start date | |
agent_runtimes = {} | |
for agent_id in df['agent_id'].unique(): | |
agent_data = df[df['agent_id'] == agent_id] | |
agent_name = agent_data['agent_name'].iloc[0] | |
last_report = agent_data['timestamp'].max() | |
runtime_days = (last_report - fixed_start_date).total_seconds() / (24 * 3600) # Convert to days | |
agent_runtimes[agent_id] = { | |
'agent_name': agent_name, | |
'last_report': last_report, | |
'runtime_days': runtime_days | |
} | |
# Calculate average runtime | |
avg_runtime = sum(data['runtime_days'] for data in agent_runtimes.values()) / len(agent_runtimes) if agent_runtimes else 0 | |
logger.info(f"Average agent runtime from fixed start date: {avg_runtime:.2f} days") | |
# Log individual agent runtimes for debugging | |
for agent_id, data in agent_runtimes.items(): | |
logger.info(f"Agent {data['agent_name']} (ID: {agent_id}): Runtime = {data['runtime_days']:.2f} days, Last report: {data['last_report']}") | |
# IMPORTANT: Force data types to ensure consistency | |
df['roi'] = df['roi'].astype(float) # Ensure ROI is float | |
# Convert ROI values to percentages (multiply by 100) | |
df['roi'] = df['roi'] * 100 | |
df['metric_type'] = df['metric_type'].astype(str) # Ensure metric_type is string | |
# Get min and max time for shapes | |
min_time = df['timestamp'].min() | |
max_time = df['timestamp'].max() | |
# Use the actual start date from the data instead of a fixed date | |
x_start_date = min_time | |
# CRITICAL: Log the exact dataframe we're using for plotting to help debug | |
logger.info(f"ROI Graph data - shape: {df.shape}, columns: {df.columns}") | |
logger.info(f"ROI Graph data - unique agents: {df['agent_name'].unique().tolist()}") | |
logger.info(f"ROI Graph data - min ROI: {df['roi'].min()}, max ROI: {df['roi'].max()}") | |
# Export full dataframe to CSV for debugging | |
debug_csv = "debug_roi_data.csv" | |
df.to_csv(debug_csv) | |
logger.info(f"Exported ROI graph data to {debug_csv} for debugging") | |
# Create Plotly figure in a clean state | |
fig = go.Figure() | |
# Get min and max time for shapes | |
min_time = df['timestamp'].min() | |
max_time = df['timestamp'].max() | |
# Add background shapes for positive and negative regions | |
# Add shape for positive ROI region (above zero) | |
fig.add_shape( | |
type="rect", | |
fillcolor="rgba(230, 243, 255, 0.3)", | |
line=dict(width=0), | |
y0=0, y1=100, # Use a fixed positive value (percentage) | |
x0=min_time, x1=max_time, | |
layer="below" | |
) | |
# Add shape for negative ROI region (below zero) | |
fig.add_shape( | |
type="rect", | |
fillcolor="rgba(255, 230, 230, 0.3)", | |
line=dict(width=0), | |
y0=-100, y1=0, # Use a fixed negative value (percentage) | |
x0=min_time, x1=max_time, | |
layer="below" | |
) | |
# Add zero line | |
fig.add_shape( | |
type="line", | |
line=dict(dash="solid", width=1.5, color="black"), | |
y0=0, y1=0, | |
x0=min_time, x1=max_time | |
) | |
# Filter out outliers (ROI values above 200% or below -200%) | |
outlier_data = df[(df['roi'] > 200) | (df['roi'] < -200)].copy() | |
df_filtered = df[(df['roi'] <= 200) & (df['roi'] >= -200)].copy() | |
# Log the outliers for better debugging | |
if len(outlier_data) > 0: | |
excluded_count = len(outlier_data) | |
logger.info(f"Excluded {excluded_count} data points with outlier ROI values (>200% or <-200%)") | |
# Group outliers by agent for detailed logging | |
outlier_agents = outlier_data.groupby('agent_name') | |
for agent_name, agent_outliers in outlier_agents: | |
logger.info(f"Agent '{agent_name}' has {len(agent_outliers)} outlier values:") | |
for idx, row in agent_outliers.iterrows(): | |
logger.info(f" - ROI: {row['roi']}, timestamp: {row['timestamp']}") | |
# Use the filtered data for all subsequent operations | |
df = df_filtered | |
# Group by timestamp and calculate mean ROI | |
avg_roi_data = df.groupby('timestamp')['roi'].mean().reset_index() | |
# Sort by timestamp | |
avg_roi_data = avg_roi_data.sort_values('timestamp') | |
# Log the average ROI data | |
logger.info(f"Calculated average ROI data with {len(avg_roi_data)} points") | |
for idx, row in avg_roi_data.iterrows(): | |
logger.info(f" Average point {idx}: timestamp={row['timestamp']}, avg_roi={row['roi']}") | |
# Calculate moving average based on a time window (3 days) | |
# Sort data by timestamp | |
df_sorted = df.sort_values('timestamp') | |
# Create a new dataframe for the moving average | |
avg_roi_data_with_ma = avg_roi_data.copy() | |
avg_roi_data_with_ma['moving_avg'] = None # Initialize the moving average column | |
# Define the time window for the moving average (3 days) | |
time_window = pd.Timedelta(days=3) | |
logger.info(f"Calculating moving average with time window of {time_window}") | |
# Calculate the moving averages for each timestamp | |
for i, row in avg_roi_data_with_ma.iterrows(): | |
current_time = row['timestamp'] | |
window_start = current_time - time_window | |
# Get all data points within the 3-day time window | |
window_data = df_sorted[ | |
(df_sorted['timestamp'] >= window_start) & | |
(df_sorted['timestamp'] <= current_time) | |
] | |
# Calculate the average ROI for the 3-day time window | |
if not window_data.empty: | |
avg_roi_data_with_ma.at[i, 'moving_avg'] = window_data['roi'].mean() | |
logger.debug(f"ROI time window {window_start} to {current_time}: {len(window_data)} points, avg={window_data['roi'].mean()}") | |
else: | |
# If no data points in the window, use the current value | |
avg_roi_data_with_ma.at[i, 'moving_avg'] = row['roi'] | |
logger.debug(f"No data points in time window for {current_time}, using current value {row['roi']}") | |
logger.info(f"Calculated time-based moving averages with {len(avg_roi_data_with_ma)} points") | |
# Find the last date where we have valid moving average data | |
last_valid_ma_date = avg_roi_data_with_ma[avg_roi_data_with_ma['moving_avg'].notna()]['timestamp'].max() if not avg_roi_data_with_ma['moving_avg'].dropna().empty else None | |
# If we don't have any valid moving average data, use the max time from the original data | |
last_valid_date = last_valid_ma_date if last_valid_ma_date is not None else df['timestamp'].max() | |
logger.info(f"Last valid moving average date: {last_valid_ma_date}") | |
logger.info(f"Using last valid date for graph: {last_valid_date}") | |
# Plot individual agent data points with agent names in hover, but limit display for scalability | |
if not df.empty: | |
# Group by agent to use different colors for each agent | |
unique_agents = df['agent_name'].unique() | |
colors = px.colors.qualitative.Plotly[:len(unique_agents)] | |
# Create a color map for agents | |
color_map = {agent: colors[i % len(colors)] for i, agent in enumerate(unique_agents)} | |
# Calculate the total number of data points per agent to determine which are most active | |
agent_counts = df['agent_name'].value_counts() | |
# Determine how many agents to show individually (limit to top 5 most active) | |
MAX_VISIBLE_AGENTS = 5 | |
top_agents = agent_counts.nlargest(min(MAX_VISIBLE_AGENTS, len(agent_counts))).index.tolist() | |
logger.info(f"Showing {len(top_agents)} agents by default out of {len(unique_agents)} total agents") | |
# Add data points for each agent, but only make top agents visible by default | |
for agent_name in unique_agents: | |
agent_data = df[df['agent_name'] == agent_name] | |
# Explicitly convert to Python lists | |
x_values = agent_data['timestamp'].tolist() | |
y_values = agent_data['roi'].tolist() | |
# Change default visibility to False to hide all agent data points | |
is_visible = False | |
# Add data points as markers for ROI | |
fig.add_trace( | |
go.Scatter( | |
x=x_values, | |
y=y_values, | |
mode='markers', # Only markers for original data | |
marker=dict( | |
color=color_map[agent_name], | |
symbol='circle', | |
size=10, | |
line=dict(width=1, color='black') | |
), | |
name=f'Agent: {agent_name} (ROI)', | |
hovertemplate='Time: %{x}<br>ROI: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>', | |
visible=is_visible # All agents hidden by default | |
) | |
) | |
logger.info(f"Added ROI data points for agent {agent_name} with {len(x_values)} points (visible: {is_visible})") | |
# Add ROI moving average as a smooth line | |
x_values_ma = avg_roi_data_with_ma['timestamp'].tolist() | |
y_values_ma = avg_roi_data_with_ma['moving_avg'].tolist() | |
# Create hover template for the ROI moving average line | |
hover_data_roi = [] | |
for idx, row in avg_roi_data_with_ma.iterrows(): | |
timestamp = row['timestamp'] | |
# Format timestamp to show only up to seconds (not milliseconds) | |
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S') | |
# Calculate number of active agents in the last 24 hours | |
time_24h_ago = timestamp - pd.Timedelta(hours=24) | |
active_agents = len(df[(df['timestamp'] >= time_24h_ago) & | |
(df['timestamp'] <= timestamp)]['agent_id'].unique()) | |
hover_data_roi.append( | |
f"Time: {formatted_timestamp}<br>Avg ROI (3d window): {row['moving_avg']:.2f}%<br>Active agents (24h): {active_agents}" | |
) | |
fig.add_trace( | |
go.Scatter( | |
x=x_values_ma, | |
y=y_values_ma, | |
mode='lines', # Only lines for moving average | |
line=dict(color='blue', width=2), # Thinner line | |
name='Average ROI (3d window)', | |
hovertext=hover_data_roi, | |
hoverinfo='text', | |
visible=True # Visible by default | |
) | |
) | |
logger.info(f"Added 3-day moving average ROI trace with {len(x_values_ma)} points") | |
# Update layout with average runtime information in the title | |
fig.update_layout( | |
title=dict( | |
text=f"Modius Agents ROI (over avg. {avg_runtime:.1f} days runtime)", | |
font=dict( | |
family="Arial, sans-serif", | |
size=22, | |
color="black", | |
weight="bold" | |
) | |
), | |
xaxis_title=None, # Remove x-axis title to use annotation instead | |
yaxis_title=None, # Remove the y-axis title as we'll use annotations instead | |
template="plotly_white", | |
height=600, # Reduced height for better fit on smaller screens | |
autosize=True, # Enable auto-sizing for responsiveness | |
legend=dict( | |
orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1, | |
groupclick="toggleitem" | |
), | |
margin=dict(r=30, l=120, t=40, b=50), # Increased bottom margin for x-axis title | |
hovermode="closest" | |
) | |
# Add single annotation for y-axis | |
fig.add_annotation( | |
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels | |
y=0, # Center of the y-axis | |
xref="paper", | |
yref="y", | |
text="ROI [%]", | |
showarrow=False, | |
font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size | |
textangle=-90, # Rotate text to be vertical | |
align="center" | |
) | |
# Update layout for legend | |
fig.update_layout( | |
legend=dict( | |
orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1, | |
groupclick="toggleitem", | |
font=dict( | |
family="Arial, sans-serif", | |
size=14, # Adjusted font size | |
color="black", | |
weight="bold" | |
) | |
) | |
) | |
# Update y-axis with fixed range of -100% to +100% for ROI | |
fig.update_yaxes( | |
showgrid=True, | |
gridwidth=1, | |
gridcolor='rgba(0,0,0,0.1)', | |
# Use fixed range instead of autoscaling | |
autorange=False, # Disable autoscaling | |
range=[-100, 100], # Set fixed range from -100% to +100% | |
tickformat=".2f", # Format tick labels with 2 decimal places | |
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size | |
title=None # Remove the built-in axis title since we're using annotations | |
) | |
# Update x-axis with better formatting and fixed range | |
fig.update_xaxes( | |
showgrid=True, | |
gridwidth=1, | |
gridcolor='rgba(0,0,0,0.1)', | |
# Set fixed range with start date and ending at the last valid date | |
autorange=False, # Disable autoscaling | |
range=[x_start_date, last_valid_date], # Set fixed range from start date to last valid date | |
tickformat="%b %d", # Simplified date format without time | |
tickangle=-30, # Angle the labels for better readability | |
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size | |
title=None # Remove built-in title to use annotation instead | |
) | |
try: | |
# Save the figure | |
graph_file = "modius_roi_graph.html" | |
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False) | |
# Also save as image for compatibility | |
img_file = "modius_roi_graph.png" | |
try: | |
fig.write_image(img_file) | |
logger.info(f"ROI graph saved to {graph_file} and {img_file}") | |
except Exception as e: | |
logger.error(f"Error saving ROI image: {e}") | |
logger.info(f"ROI graph saved to {graph_file} only") | |
# Return the figure object for direct use in Gradio | |
return fig | |
except Exception as e: | |
# If the complex graph approach fails, create a simpler one | |
logger.error(f"Error creating advanced ROI graph: {e}") | |
logger.info("Falling back to Simpler ROI graph") | |
# Create a simpler graph as fallback | |
simple_fig = go.Figure() | |
# Add zero line | |
simple_fig.add_shape( | |
type="line", | |
line=dict(dash="solid", width=1.5, color="black"), | |
y0=0, y1=0, | |
x0=min_time, x1=max_time | |
) | |
# Simply plot the average ROI data with moving average | |
if not avg_roi_data.empty: | |
# Add moving average as a line | |
simple_fig.add_trace( | |
go.Scatter( | |
x=avg_roi_data_with_ma['timestamp'], | |
y=avg_roi_data_with_ma['moving_avg'], | |
mode='lines', | |
name='Average ROI (3d window)', | |
line=dict(width=2, color='blue') # Thinner line | |
) | |
) | |
# Simplified layout with adjusted y-axis range | |
simple_fig.update_layout( | |
title=dict( | |
text="Modius Agents ROI", | |
font=dict( | |
family="Arial, sans-serif", | |
size=22, | |
color="black", | |
weight="bold" | |
) | |
), | |
xaxis_title=None, | |
yaxis_title=None, | |
template="plotly_white", | |
height=600, | |
autosize=True, | |
margin=dict(r=30, l=120, t=40, b=50) | |
) | |
# Update y-axis with fixed range of -100% to +100% for ROI | |
simple_fig.update_yaxes( | |
showgrid=True, | |
gridwidth=1, | |
gridcolor='rgba(0,0,0,0.1)', | |
autorange=False, | |
range=[-100, 100], | |
tickformat=".2f", | |
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), | |
title=None # Remove the built-in axis title since we're using annotations | |
) | |
# Update x-axis with better formatting and fixed range | |
simple_fig.update_xaxes( | |
showgrid=True, | |
gridwidth=1, | |
gridcolor='rgba(0,0,0,0.1)', | |
autorange=False, | |
range=[x_start_date, max_time], | |
tickformat="%b %d", | |
tickangle=-30, | |
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold") | |
) | |
# Save the figure | |
graph_file = "modius_roi_graph.html" | |
simple_fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False) | |
# Return the simple figure | |
return simple_fig | |
def save_roi_to_csv(df): | |
"""Save the ROI data DataFrame to a CSV file and return the file path""" | |
if df.empty: | |
logger.error("No ROI data to save to CSV") | |
return None | |
# Define the CSV file path | |
csv_file = "modius_roi_values.csv" | |
# Save to CSV | |
df.to_csv(csv_file, index=False) | |
logger.info(f"ROI data saved to {csv_file}") | |
return csv_file | |
def create_time_series_graph_per_agent(df): | |
"""Create a time series graph for each agent using Plotly""" | |
# Get unique agents | |
unique_agents = df['agent_id'].unique() | |
if len(unique_agents) == 0: | |
logger.error("No agent data to plot") | |
fig = go.Figure() | |
fig.add_annotation( | |
text="No agent data available", | |
x=0.5, y=0.5, | |
showarrow=False, font=dict(size=20) | |
) | |
return fig | |
# Create a subplot figure for each agent | |
fig = make_subplots(rows=len(unique_agents), cols=1, | |
subplot_titles=[f"Agent: {df[df['agent_id'] == agent_id]['agent_name'].iloc[0]}" | |
for agent_id in unique_agents], | |
vertical_spacing=0.1) | |
# Plot data for each agent | |
for i, agent_id in enumerate(unique_agents): | |
agent_data = df[df['agent_id'] == agent_id].copy() | |
agent_name = agent_data['agent_name'].iloc[0] | |
row = i + 1 | |
# Add zero line to separate APR and Performance | |
fig.add_shape( | |
type="line", line=dict(dash="solid", width=1.5, color="black"), | |
y0=0, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(), | |
row=row, col=1 | |
) | |
# Add background colors | |
fig.add_shape( | |
type="rect", fillcolor="rgba(230, 243, 255, 0.3)", line=dict(width=0), | |
y0=0, y1=1000, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(), | |
row=row, col=1, layer="below" | |
) | |
fig.add_shape( | |
type="rect", fillcolor="rgba(255, 230, 230, 0.3)", line=dict(width=0), | |
y0=-1000, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(), | |
row=row, col=1, layer="below" | |
) | |
# Create separate dataframes for different data types | |
apr_data = agent_data[agent_data['metric_type'] == 'APR'] | |
perf_data = agent_data[agent_data['metric_type'] == 'Performance'] | |
# Sort all data by timestamp for the line plots | |
combined_agent_data = agent_data.sort_values('timestamp') | |
# Add main line connecting all points | |
fig.add_trace( | |
go.Scatter( | |
x=combined_agent_data['timestamp'], | |
y=combined_agent_data['apr'], | |
mode='lines', | |
line=dict(color='purple', width=2), | |
name=f'{agent_name}', | |
legendgroup=agent_name, | |
showlegend=(i == 0), # Only show in legend once | |
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<extra></extra>' | |
), | |
row=row, col=1 | |
) | |
# Add scatter points for APR values | |
if not apr_data.empty: | |
fig.add_trace( | |
go.Scatter( | |
x=apr_data['timestamp'], | |
y=apr_data['apr'], | |
mode='markers', | |
marker=dict(color='blue', size=10, symbol='circle'), | |
name='APR', | |
legendgroup='APR', | |
showlegend=(i == 0), | |
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<extra></extra>' | |
), | |
row=row, col=1 | |
) | |
# Add scatter points for Performance values | |
if not perf_data.empty: | |
fig.add_trace( | |
go.Scatter( | |
x=perf_data['timestamp'], | |
y=perf_data['apr'], | |
mode='markers', | |
marker=dict(color='red', size=10, symbol='square'), | |
name='Performance', | |
legendgroup='Performance', | |
showlegend=(i == 0), | |
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<extra></extra>' | |
), | |
row=row, col=1 | |
) | |
# Update axes | |
fig.update_xaxes(title_text="Time", row=row, col=1) | |
fig.update_yaxes(title_text="Value", row=row, col=1, gridcolor='rgba(0,0,0,0.1)') | |
# Update layout | |
fig.update_layout( | |
height=400 * len(unique_agents), | |
width=1000, | |
title_text="APR and Performance Values per Agent", | |
template="plotly_white", | |
legend=dict( | |
orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1 | |
), | |
margin=dict(r=20, l=20, t=30, b=20), | |
hovermode="closest" | |
) | |
# Save the figure (still useful for reference) | |
graph_file = "modius_apr_per_agent_graph.html" | |
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False) | |
# Also save as image for compatibility | |
img_file = "modius_apr_per_agent_graph.png" | |
fig.write_image(img_file) | |
logger.info(f"Per-agent graph saved to {graph_file} and {img_file}") | |
# Return the figure object for direct use in Gradio | |
return fig | |
def write_debug_info(df, fig): | |
"""Minimal debug info function""" | |
try: | |
# Just log minimal information | |
logger.debug(f"Graph created with {len(df)} data points and {len(fig.data)} traces") | |
return True | |
except Exception as e: | |
logger.error(f"Error writing debug info: {e}") | |
return False | |
def create_combined_time_series_graph(df): | |
"""Create a time series graph showing average APR values across all agents""" | |
if len(df) == 0: | |
logger.error("No data to plot combined graph") | |
fig = go.Figure() | |
fig.add_annotation( | |
text="No data available", | |
x=0.5, y=0.5, | |
showarrow=False, font=dict(size=20) | |
) | |
return fig | |
# IMPORTANT: Force data types to ensure consistency | |
df['apr'] = df['apr'].astype(float) # Ensure APR is float | |
df['metric_type'] = df['metric_type'].astype(str) # Ensure metric_type is string | |
# Get min and max time for shapes | |
min_time = df['timestamp'].min() | |
max_time = df['timestamp'].max() | |
# Use April 17th, 2025 as the fixed start date for APR graph | |
x_start_date = datetime(2025, 4, 17) | |
# CRITICAL: Log the exact dataframe we're using for plotting to help debug | |
logger.info(f"Graph data - shape: {df.shape}, columns: {df.columns}") | |
logger.info(f"Graph data - unique agents: {df['agent_name'].unique().tolist()}") | |
logger.info("Graph data - all positive APR values only") | |
logger.info(f"Graph data - min APR: {df['apr'].min()}, max APR: {df['apr'].max()}") | |
# Export full dataframe to CSV for debugging | |
debug_csv = "debug_graph_data.csv" | |
df.to_csv(debug_csv) | |
logger.info(f"Exported graph data to {debug_csv} for debugging") | |
# Write detailed data report | |
with open("debug_graph_data_report.txt", "w") as f: | |
f.write("==== GRAPH DATA REPORT ====\n\n") | |
f.write(f"Total data points: {len(df)}\n") | |
f.write(f"Timestamp range: {df['timestamp'].min()} to {df['timestamp'].max()}\n\n") | |
# Output per-agent details | |
unique_agents = df['agent_id'].unique() | |
f.write(f"Number of agents: {len(unique_agents)}\n\n") | |
for agent_id in unique_agents: | |
agent_data = df[df['agent_id'] == agent_id] | |
agent_name = agent_data['agent_name'].iloc[0] | |
f.write(f"== Agent: {agent_name} (ID: {agent_id}) ==\n") | |
f.write(f" Total data points: {len(agent_data)}\n") | |
apr_data = agent_data[agent_data['metric_type'] == 'APR'] | |
f.write(f" APR data points: {len(apr_data)}\n") | |
if not apr_data.empty: | |
f.write(f" APR values: {apr_data['apr'].tolist()}\n") | |
f.write(f" APR timestamps: {[ts.strftime('%Y-%m-%d %H:%M:%S') if ts is not None else 'None' for ts in apr_data['timestamp']]}\n") | |
f.write("\n") | |
logger.info("Generated detailed graph data report") | |
# ENSURE THERE ARE NO CONFLICTING AXES OR TRACES | |
# Create Plotly figure in a clean state | |
fig = go.Figure() | |
# Enable autoscaling instead of fixed ranges | |
logger.info("Using autoscaling for axes ranges") | |
# Add background shapes for APR and Performance regions | |
min_time = df['timestamp'].min() | |
max_time = df['timestamp'].max() | |
# Add shape for positive APR region (above zero) | |
fig.add_shape( | |
type="rect", | |
fillcolor="rgba(230, 243, 255, 0.3)", | |
line=dict(width=0), | |
y0=0, y1=100, # Use a fixed positive value | |
x0=min_time, x1=max_time, | |
layer="below" | |
) | |
# Add shape for negative APR region (below zero) | |
fig.add_shape( | |
type="rect", | |
fillcolor="rgba(255, 230, 230, 0.3)", | |
line=dict(width=0), | |
y0=-100, y1=0, # Use a fixed negative value | |
x0=min_time, x1=max_time, | |
layer="below" | |
) | |
# Add zero line | |
fig.add_shape( | |
type="line", | |
line=dict(dash="solid", width=1.5, color="black"), | |
y0=0, y1=0, | |
x0=min_time, x1=max_time | |
) | |
# MODIFIED: Calculate average APR values across all agents for each timestamp | |
# Filter for APR data only | |
apr_data = df[df['metric_type'] == 'APR'].copy() | |
# Filter out outliers (APR values above 200 or below -200) | |
outlier_data = apr_data[(apr_data['apr'] > 200) | (apr_data['apr'] < -200)].copy() | |
apr_data_filtered = apr_data[(apr_data['apr'] <= 200) & (apr_data['apr'] >= -200)].copy() | |
# Log the outliers for better debugging | |
if len(outlier_data) > 0: | |
excluded_count = len(outlier_data) | |
logger.info(f"Excluded {excluded_count} data points with outlier APR values (>200 or <-200)") | |
# Group outliers by agent for detailed logging | |
outlier_agents = outlier_data.groupby('agent_name') | |
for agent_name, agent_outliers in outlier_agents: | |
logger.info(f"Agent '{agent_name}' has {len(agent_outliers)} outlier values:") | |
for idx, row in agent_outliers.iterrows(): | |
logger.info(f" - APR: {row['apr']}, timestamp: {row['timestamp']}") | |
# Use the filtered data for all subsequent operations | |
apr_data = apr_data_filtered | |
# Group by timestamp and calculate mean APR | |
avg_apr_data = apr_data.groupby('timestamp')['apr'].mean().reset_index() | |
# Sort by timestamp | |
avg_apr_data = avg_apr_data.sort_values('timestamp') | |
# Log the average APR data | |
logger.info(f"Calculated average APR data with {len(avg_apr_data)} points") | |
for idx, row in avg_apr_data.iterrows(): | |
logger.info(f" Average point {idx}: timestamp={row['timestamp']}, avg_apr={row['apr']}") | |
# Calculate moving average based on a time window (2 hours) | |
# Sort data by timestamp | |
apr_data_sorted = apr_data.sort_values('timestamp') | |
# Create a new dataframe for the moving average | |
avg_apr_data_with_ma = avg_apr_data.copy() | |
avg_apr_data_with_ma['moving_avg'] = None # Initialize the moving average column | |
# Define the time window for the moving average (3 days) | |
time_window = pd.Timedelta(days=3) | |
logger.info(f"Calculating moving average with time window of {time_window}") | |
# Calculate moving averages: one for APR and one for adjusted APR | |
avg_apr_data_with_ma['moving_avg'] = None # 3-day window for APR | |
avg_apr_data_with_ma['adjusted_moving_avg'] = None # 3-day window for adjusted APR | |
# Keep track of the last valid adjusted_moving_avg value to handle gaps | |
last_valid_adjusted_moving_avg = None | |
# Calculate the moving averages for each timestamp | |
for i, row in avg_apr_data_with_ma.iterrows(): | |
current_time = row['timestamp'] | |
window_start = current_time - time_window | |
# Get all data points within the 3-day time window | |
window_data = apr_data_sorted[ | |
(apr_data_sorted['timestamp'] >= window_start) & | |
(apr_data_sorted['timestamp'] <= current_time) | |
] | |
# Calculate the average APR for the 3-day time window | |
if not window_data.empty: | |
avg_apr_data_with_ma.at[i, 'moving_avg'] = window_data['apr'].mean() | |
logger.debug(f"APR time window {window_start} to {current_time}: {len(window_data)} points, avg={window_data['apr'].mean()}") | |
# Calculate adjusted APR moving average if data exists | |
has_adjusted_apr = 'adjusted_apr' in window_data.columns and window_data['adjusted_apr'].notna().any() | |
if has_adjusted_apr: | |
adjusted_avg = window_data['adjusted_apr'].dropna().mean() | |
avg_apr_data_with_ma.at[i, 'adjusted_moving_avg'] = adjusted_avg | |
last_valid_adjusted_moving_avg = adjusted_avg | |
logger.debug(f"Adjusted APR time window {window_start} to {current_time}: {len(window_data)} points, avg={adjusted_avg}") | |
else: | |
# If we don't have adjusted_apr data in this window but had some previously, | |
# use the last valid value to maintain continuity in the graph | |
if last_valid_adjusted_moving_avg is not None: | |
avg_apr_data_with_ma.at[i, 'adjusted_moving_avg'] = last_valid_adjusted_moving_avg | |
logger.debug(f"No adjusted APR data in window, using last valid value: {last_valid_adjusted_moving_avg}") | |
else: | |
# If no data points in the window, use the current value | |
avg_apr_data_with_ma.at[i, 'moving_avg'] = row['apr'] | |
logger.debug(f"No data points in time window for {current_time}, using current value {row['apr']}") | |
logger.info(f"Calculated time-based moving averages with {len(avg_apr_data_with_ma)} points") | |
# Find the last date where we have valid moving average data | |
last_valid_ma_date = avg_apr_data_with_ma[avg_apr_data_with_ma['moving_avg'].notna()]['timestamp'].max() if not avg_apr_data_with_ma['moving_avg'].dropna().empty else None | |
# Find the last date where we have valid adjusted moving average data | |
last_valid_adj_ma_date = None | |
if 'adjusted_moving_avg' in avg_apr_data_with_ma.columns and avg_apr_data_with_ma['adjusted_moving_avg'].notna().any(): | |
last_valid_adj_ma_date = avg_apr_data_with_ma[avg_apr_data_with_ma['adjusted_moving_avg'].notna()]['timestamp'].max() | |
# Determine the last valid date for either moving average | |
last_valid_date = last_valid_ma_date | |
if last_valid_adj_ma_date is not None: | |
last_valid_date = max(last_valid_date, last_valid_adj_ma_date) if last_valid_date is not None else last_valid_adj_ma_date | |
# If we don't have any valid moving average data, use the max time from the original data | |
if last_valid_date is None: | |
last_valid_date = df['timestamp'].max() | |
logger.info(f"Last valid moving average date: {last_valid_ma_date}") | |
logger.info(f"Last valid adjusted moving average date: {last_valid_adj_ma_date}") | |
logger.info(f"Using last valid date for graph: {last_valid_date}") | |
# Plot individual agent data points with agent names in hover, but limit display for scalability | |
if not apr_data.empty: | |
# Group by agent to use different colors for each agent | |
unique_agents = apr_data['agent_name'].unique() | |
colors = px.colors.qualitative.Plotly[:len(unique_agents)] | |
# Create a color map for agents | |
color_map = {agent: colors[i % len(colors)] for i, agent in enumerate(unique_agents)} | |
# Calculate the total number of data points per agent to determine which are most active | |
agent_counts = apr_data['agent_name'].value_counts() | |
# Determine how many agents to show individually (limit to top 5 most active) | |
MAX_VISIBLE_AGENTS = 5 | |
top_agents = agent_counts.nlargest(min(MAX_VISIBLE_AGENTS, len(agent_counts))).index.tolist() | |
logger.info(f"Showing {len(top_agents)} agents by default out of {len(unique_agents)} total agents") | |
# Add data points for each agent, but only make top agents visible by default | |
for agent_name in unique_agents: | |
agent_data = apr_data[apr_data['agent_name'] == agent_name] | |
# Explicitly convert to Python lists | |
x_values = agent_data['timestamp'].tolist() | |
y_values = agent_data['apr'].tolist() | |
# Change default visibility to False to hide all agent data points | |
is_visible = False | |
# Add data points as markers for APR | |
fig.add_trace( | |
go.Scatter( | |
x=x_values, | |
y=y_values, | |
mode='markers', # Only markers for original data | |
marker=dict( | |
color=color_map[agent_name], | |
symbol='circle', | |
size=10, | |
line=dict(width=1, color='black') | |
), | |
name=f'Agent: {agent_name} (APR)', | |
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>', | |
visible=is_visible # All agents hidden by default | |
) | |
) | |
logger.info(f"Added APR data points for agent {agent_name} with {len(x_values)} points (visible: {is_visible})") | |
# Add data points for adjusted APR if it exists | |
if 'adjusted_apr' in agent_data.columns and agent_data['adjusted_apr'].notna().any(): | |
x_values_adj = agent_data['timestamp'].tolist() | |
y_values_adj = agent_data['adjusted_apr'].tolist() | |
fig.add_trace( | |
go.Scatter( | |
x=x_values_adj, | |
y=y_values_adj, | |
mode='markers', # Only markers for original data | |
marker=dict( | |
color=color_map[agent_name], | |
symbol='diamond', # Different symbol for adjusted APR | |
size=10, | |
line=dict(width=1, color='black') | |
), | |
name=f'Agent: {agent_name} (Adjusted APR)', | |
hovertemplate='Time: %{x}<br>Adjusted APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>', | |
visible=is_visible # All agents hidden by default | |
) | |
) | |
logger.info(f"Added Adjusted APR data points for agent {agent_name} with {len(x_values_adj)} points (visible: {is_visible})") | |
# Add APR moving average as a smooth line | |
x_values_ma = avg_apr_data_with_ma['timestamp'].tolist() | |
y_values_ma = avg_apr_data_with_ma['moving_avg'].tolist() | |
# Create hover template for the APR moving average line | |
hover_data_apr = [] | |
for idx, row in avg_apr_data_with_ma.iterrows(): | |
timestamp = row['timestamp'] | |
# Format timestamp to show only up to seconds (not milliseconds) | |
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S') | |
# Calculate number of active agents in the last 24 hours | |
# Use ROI data after April 25th, 2025, and APR data before that date | |
time_24h_ago = timestamp - pd.Timedelta(hours=24) | |
april_25_2025 = datetime(2025, 4, 25) | |
if timestamp >= april_25_2025 and global_roi_df is not None and not global_roi_df.empty: | |
# After April 25th, 2025: Use ROI data | |
roi_window_data = global_roi_df[(global_roi_df['timestamp'] >= time_24h_ago) & | |
(global_roi_df['timestamp'] <= timestamp)] | |
active_agents = len(roi_window_data['agent_id'].unique()) | |
logger.debug(f"Using ROI data for active agent count at {timestamp} (after Apr 25): {active_agents} agents") | |
else: | |
# Before April 25th, 2025 or if ROI data is not available: Use APR data | |
active_agents = len(apr_data[(apr_data['timestamp'] >= time_24h_ago) & | |
(apr_data['timestamp'] <= timestamp)]['agent_id'].unique()) | |
logger.debug(f"Using APR data for active agent count at {timestamp} (before Apr 25): {active_agents} agents") | |
hover_data_apr.append( | |
f"Time: {formatted_timestamp}<br>Avg APR (3d window): {row['moving_avg']:.2f}<br>Active agents (24h): {active_agents}" | |
) | |
fig.add_trace( | |
go.Scatter( | |
x=x_values_ma, | |
y=y_values_ma, | |
mode='lines', # Only lines for moving average | |
line=dict(color='red', width=2), # Thinner line | |
name='Average APR (3d window)', | |
hovertext=hover_data_apr, | |
hoverinfo='text', | |
visible=True # Visible by default | |
) | |
) | |
logger.info(f"Added 3-day moving average APR trace with {len(x_values_ma)} points") | |
# Add adjusted APR moving average line if it exists | |
if 'adjusted_moving_avg' in avg_apr_data_with_ma.columns and avg_apr_data_with_ma['adjusted_moving_avg'].notna().any(): | |
# Create a copy of the dataframe with forward-filled adjusted_moving_avg values | |
# to ensure the line continues even when we have missing data | |
filled_avg_apr_data = avg_apr_data_with_ma.copy() | |
filled_avg_apr_data['adjusted_moving_avg'] = filled_avg_apr_data['adjusted_moving_avg'].fillna(method='ffill') | |
# Use the filled dataframe for the adjusted APR line | |
x_values_adj = filled_avg_apr_data['timestamp'].tolist() | |
y_values_adj_ma = filled_avg_apr_data['adjusted_moving_avg'].tolist() | |
# Create hover template for the adjusted APR moving average line | |
hover_data_adj = [] | |
for idx, row in filled_avg_apr_data.iterrows(): | |
timestamp = row['timestamp'] | |
# Format timestamp to show only up to seconds (not milliseconds) | |
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S') | |
# Calculate number of active agents in the last 24 hours | |
# Use ROI data after April 25th, 2025, and APR data before that date | |
time_24h_ago = timestamp - pd.Timedelta(hours=24) | |
april_25_2025 = datetime(2025, 4, 25) | |
if timestamp >= april_25_2025 and global_roi_df is not None and not global_roi_df.empty: | |
# After April 25th, 2025: Use ROI data | |
roi_window_data = global_roi_df[(global_roi_df['timestamp'] >= time_24h_ago) & | |
(global_roi_df['timestamp'] <= timestamp)] | |
active_agents = len(roi_window_data['agent_id'].unique()) | |
logger.debug(f"Using ROI data for adjusted APR active agent count at {timestamp} (after Apr 25)") | |
else: | |
# Before April 25th, 2025 or if ROI data is not available: Use APR data | |
active_agents = len(apr_data[(apr_data['timestamp'] >= time_24h_ago) & | |
(apr_data['timestamp'] <= timestamp)]['agent_id'].unique()) | |
logger.debug(f"Using APR data for adjusted APR active agent count at {timestamp} (before Apr 25)") | |
if pd.notna(row['adjusted_moving_avg']): | |
hover_data_adj.append( | |
f"Time: {formatted_timestamp}<br>Avg ETH Adjusted APR (3d window): {row['adjusted_moving_avg']:.2f}<br>Active agents (24h): {active_agents}" | |
) | |
else: | |
hover_data_adj.append( | |
f"Time: {formatted_timestamp}<br>Avg ETH Adjusted APR (3d window): N/A<br>Active agents (24h): {active_agents}" | |
) | |
fig.add_trace( | |
go.Scatter( | |
x=x_values_adj, | |
y=y_values_adj_ma, | |
mode='lines', # Only lines for moving average | |
line=dict(color='green', width=4), # Thicker solid line for adjusted APR | |
name='Average ETH Adjusted APR (3d window)', | |
hovertext=hover_data_adj, | |
hoverinfo='text', | |
visible=True # Visible by default | |
) | |
) | |
logger.info(f"Added 3-day moving average Adjusted APR trace with {len(x_values_adj)} points (with forward-filling for missing values)") | |
else: | |
logger.warning("No adjusted APR moving average data available to plot") | |
# Removed cumulative APR as requested | |
logger.info("Cumulative APR graph line has been removed as requested") | |
# Update layout - use simple boolean values everywhere | |
# Make chart responsive instead of fixed width | |
fig.update_layout( | |
title=dict( | |
text="Modius Agents", | |
font=dict( | |
family="Arial, sans-serif", | |
size=22, | |
color="black", | |
weight="bold" | |
) | |
), | |
xaxis_title=None, # Remove x-axis title to use annotation instead | |
yaxis_title=None, # Remove the y-axis title as we'll use annotations instead | |
template="plotly_white", | |
height=600, # Reduced height for better fit on smaller screens | |
# Removed fixed width to enable responsiveness | |
autosize=True, # Enable auto-sizing for responsiveness | |
legend=dict( | |
orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1, | |
groupclick="toggleitem" | |
), | |
margin=dict(r=30, l=120, t=40, b=50), # Increased bottom margin for x-axis title | |
hovermode="closest" | |
) | |
# Add annotations for y-axis regions | |
fig.add_annotation( | |
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels | |
y=-25, # Middle of the negative region | |
xref="paper", | |
yref="y", | |
text="Percent drawdown [%]", | |
showarrow=False, | |
font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size | |
textangle=-90, # Rotate text to be vertical | |
align="center" | |
) | |
fig.add_annotation( | |
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels | |
y=50, # Middle of the positive region | |
xref="paper", | |
yref="y", | |
text="Agent APR [%]", | |
showarrow=False, | |
font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size | |
textangle=-90, # Rotate text to be vertical | |
align="center" | |
) | |
# Remove x-axis title annotation | |
# fig.add_annotation( | |
# x=0.5, # Center of the x-axis | |
# y=-0.15, # Below the x-axis | |
# xref="paper", | |
# yref="paper", | |
# text="Date", | |
# showarrow=False, | |
# font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size | |
# align="center" | |
# ) | |
# Update layout for legend | |
fig.update_layout( | |
legend=dict( | |
orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1, | |
groupclick="toggleitem", | |
font=dict( | |
family="Arial, sans-serif", | |
size=14, # Adjusted font size | |
color="black", | |
weight="bold" | |
) | |
) | |
) | |
# Update y-axis with fixed range of -50 to +100 for psychological effect | |
fig.update_yaxes( | |
showgrid=True, | |
gridwidth=1, | |
gridcolor='rgba(0,0,0,0.1)', | |
# Use fixed range instead of autoscaling | |
autorange=False, # Disable autoscaling | |
range=[-50, 100], # Set fixed range from -50 to +100 | |
tickformat=".2f", # Format tick labels with 2 decimal places | |
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size | |
title=None # Remove the built-in axis title since we're using annotations | |
) | |
# Update x-axis with better formatting and fixed range | |
fig.update_xaxes( | |
showgrid=True, | |
gridwidth=1, | |
gridcolor='rgba(0,0,0,0.1)', | |
# Set fixed range with April 17 as start date and ending at the last valid date | |
autorange=False, # Disable autoscaling | |
range=[x_start_date, last_valid_date], # Set fixed range from April 17 to last valid date | |
tickformat="%b %d", # Simplified date format without time | |
tickangle=-30, # Angle the labels for better readability | |
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size | |
title=None # Remove built-in title to use annotation instead | |
) | |
# SIMPLIFIED APPROACH: Do a direct plot without markers for comparison | |
# This creates a simple, reliable fallback plot if the advanced one fails | |
try: | |
# Write detailed debug information before saving the figure | |
write_debug_info(df, fig) | |
# Save the figure (still useful for reference) | |
graph_file = "modius_apr_combined_graph.html" | |
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False) | |
# Also save as image for compatibility | |
img_file = "modius_apr_combined_graph.png" | |
try: | |
fig.write_image(img_file) | |
logger.info(f"Combined graph saved to {graph_file} and {img_file}") | |
except Exception as e: | |
logger.error(f"Error saving image: {e}") | |
logger.info(f"Combined graph saved to {graph_file} only") | |
# Return the figure object for direct use in Gradio | |
return fig | |
except Exception as e: | |
# If the complex graph approach fails, create a simpler one | |
logger.error(f"Error creating advanced graph: {e}") | |
logger.info("Falling back to Simpler graph") | |
# Create a simpler graph as fallback | |
simple_fig = go.Figure() | |
# Add zero line | |
simple_fig.add_shape( | |
type="line", | |
line=dict(dash="solid", width=1.5, color="black"), | |
y0=0, y1=0, | |
x0=min_time, x1=max_time | |
) | |
# Define colors for the fallback graph | |
fallback_colors = px.colors.qualitative.Plotly | |
# Simply plot the average APR data with moving average | |
if not avg_apr_data.empty: | |
# Sort by timestamp | |
avg_apr_data = avg_apr_data.sort_values('timestamp') | |
# Calculate both moving averages for the fallback graph | |
avg_apr_data_with_ma = avg_apr_data.copy() | |
avg_apr_data_with_ma['moving_avg'] = None # 2-hour window | |
avg_apr_data_with_ma['infinite_avg'] = None # Infinite window | |
# Define the time window (6 hours) | |
time_window = pd.Timedelta(hours=6) | |
# Calculate the moving averages for each timestamp | |
for i, row in avg_apr_data_with_ma.iterrows(): | |
current_time = row['timestamp'] | |
window_start = current_time - time_window | |
# Get all data points within the 2-hour time window | |
window_data = apr_data[ | |
(apr_data['timestamp'] >= window_start) & | |
(apr_data['timestamp'] <= current_time) | |
] | |
# Get all data points up to the current timestamp (infinite window) | |
infinite_window_data = apr_data[ | |
apr_data['timestamp'] <= current_time | |
] | |
# Calculate the average APR for the 2-hour time window | |
if not window_data.empty: | |
avg_apr_data_with_ma.at[i, 'moving_avg'] = window_data['apr'].mean() | |
else: | |
# If no data points in the window, use the current value | |
avg_apr_data_with_ma.at[i, 'moving_avg'] = row['apr'] | |
# Calculate the average APR for the infinite window | |
if not infinite_window_data.empty: | |
avg_apr_data_with_ma.at[i, 'infinite_avg'] = infinite_window_data['apr'].mean() | |
else: | |
avg_apr_data_with_ma.at[i, 'infinite_avg'] = row['apr'] | |
# Add data points for each agent, but only make top agents visible by default | |
unique_agents = apr_data['agent_name'].unique() | |
colors = px.colors.qualitative.Plotly[:len(unique_agents)] | |
color_map = {agent: colors[i % len(colors)] for i, agent in enumerate(unique_agents)} | |
# Calculate the total number of data points per agent | |
agent_counts = apr_data['agent_name'].value_counts() | |
# Determine how many agents to show individually (limit to top 5 most active) | |
MAX_VISIBLE_AGENTS = 5 | |
top_agents = agent_counts.nlargest(min(MAX_VISIBLE_AGENTS, len(agent_counts))).index.tolist() | |
for agent_name in unique_agents: | |
agent_data = apr_data[apr_data['agent_name'] == agent_name] | |
# Determine if this agent should be visible by default | |
is_visible = agent_name in top_agents | |
# Add data points as markers | |
simple_fig.add_trace( | |
go.Scatter( | |
x=agent_data['timestamp'], | |
y=agent_data['apr'], | |
mode='markers', | |
name=f'Agent: {agent_name}', | |
marker=dict( | |
size=10, | |
color=color_map[agent_name] | |
), | |
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>', | |
visible=is_visible # Only top agents visible by default | |
) | |
) | |
# Add 2-hour moving average as a line | |
simple_fig.add_trace( | |
go.Scatter( | |
x=avg_apr_data_with_ma['timestamp'], | |
y=avg_apr_data_with_ma['moving_avg'], | |
mode='lines', | |
name='Average APR (6h window)', | |
line=dict(width=2, color='red') # Thinner line | |
) | |
) | |
# Add infinite window moving average as another line | |
simple_fig.add_trace( | |
go.Scatter( | |
x=avg_apr_data_with_ma['timestamp'], | |
y=avg_apr_data_with_ma['infinite_avg'], | |
mode='lines', | |
name='Cumulative Average APR (all data)', | |
line=dict(width=4, color='green') # Thicker solid line | |
) | |
) | |
# Simplified layout with adjusted y-axis range and increased size | |
simple_fig.update_layout( | |
title=dict( | |
text="Modius Agents", | |
font=dict( | |
family="Arial, sans-serif", | |
size=22, | |
color="black", | |
weight="bold" | |
) | |
), | |
xaxis_title=None, # Remove x-axis title to use annotation instead | |
yaxis_title=None, # Remove the y-axis title as we'll use annotations instead | |
yaxis=dict( | |
# No fixed range - let Plotly autoscale | |
autorange=True, # Explicitly enable autoscaling | |
tickformat=".2f", # Format tick labels with 2 decimal places | |
tickfont=dict(size=12) # Larger font for tick labels | |
), | |
height=600, # Reduced height for better fit | |
# Removed fixed width to enable responsiveness | |
autosize=True, # Enable auto-sizing for responsiveness | |
template="plotly_white", # Use a cleaner template | |
margin=dict(r=30, l=120, t=40, b=50) # Increased bottom margin for x-axis title | |
) | |
# Add annotations for y-axis regions in the fallback graph | |
simple_fig.add_annotation( | |
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels | |
y=-25, # Middle of the negative region | |
xref="paper", | |
yref="y", | |
text="Percent drawdown [%]", | |
showarrow=False, | |
font=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size | |
textangle=-90, # Rotate text to be vertical | |
align="center" | |
) | |
simple_fig.add_annotation( | |
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels | |
y=50, # Middle of the positive region | |
xref="paper", | |
yref="y", | |
text="Agent APR [%]", | |
showarrow=False, | |
font=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size | |
textangle=-90, # Rotate text to be vertical | |
align="center" | |
) | |
# Remove x-axis title annotation | |
# simple_fig.add_annotation( | |
# x=0.5, # Center of the x-axis | |
# y=-0.15, # Below the x-axis | |
# xref="paper", | |
# yref="paper", | |
# text="Date", | |
# showarrow=False, | |
# font=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size | |
# align="center" | |
# ) | |
# Update legend font for fallback graph | |
simple_fig.update_layout( | |
legend=dict( | |
font=dict( | |
family="Arial, sans-serif", | |
size=14, # Adjusted font size | |
color="black", | |
weight="bold" | |
) | |
) | |
) | |
# Apply fixed range to the x-axis for the fallback graph | |
simple_fig.update_xaxes( | |
autorange=False, # Disable autoscaling | |
range=[x_start_date, max_time], # Set fixed range from April 17 | |
tickformat="%b %d", # Simplified date format without time | |
tickangle=-30, | |
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size | |
title=None # Remove built-in title to use annotation instead | |
) | |
# Update y-axis tick font for fallback graph | |
simple_fig.update_yaxes( | |
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold") # Adjusted font size | |
) | |
# Add a note about hidden agents if there are more than MAX_VISIBLE_AGENTS | |
if len(unique_agents) > MAX_VISIBLE_AGENTS: | |
simple_fig.add_annotation( | |
text=f"Note: Only showing top {MAX_VISIBLE_AGENTS} agents by default. Toggle others in legend.", | |
xref="paper", yref="paper", | |
x=0.5, y=1.05, | |
showarrow=False, | |
font=dict(size=12, color="gray"), | |
align="center" | |
) | |
# Return the simple figure | |
return simple_fig | |
def save_to_csv(df): | |
"""Save the APR data DataFrame to a CSV file and return the file path""" | |
if df.empty: | |
logger.error("No APR data to save to CSV") | |
return None | |
# Define the CSV file path | |
csv_file = "modius_apr_values.csv" | |
# Save to CSV | |
df.to_csv(csv_file, index=False) | |
logger.info(f"APR data saved to {csv_file}") | |
# Also generate a statistics CSV file | |
stats_df = generate_statistics_from_data(df) | |
stats_csv = "modius_apr_statistics.csv" | |
stats_df.to_csv(stats_csv, index=False) | |
logger.info(f"Statistics saved to {stats_csv}") | |
# Log detailed statistics about adjusted APR | |
if 'adjusted_apr' in df.columns and df['adjusted_apr'].notna().any(): | |
adjusted_stats = stats_df[stats_df['avg_adjusted_apr'].notna()] | |
logger.info(f"Agents with adjusted APR data: {len(adjusted_stats)} out of {len(stats_df)}") | |
for _, row in adjusted_stats.iterrows(): | |
if row['agent_id'] != 'ALL': # Skip the overall stats row | |
logger.info(f"Agent {row['agent_name']} adjusted APR stats: avg={row['avg_adjusted_apr']:.2f}, min={row['min_adjusted_apr']:.2f}, max={row['max_adjusted_apr']:.2f}") | |
# Log overall adjusted APR stats | |
overall_row = stats_df[stats_df['agent_id'] == 'ALL'] | |
if not overall_row.empty and pd.notna(overall_row['avg_adjusted_apr'].iloc[0]): | |
logger.info(f"Overall adjusted APR stats: avg={overall_row['avg_adjusted_apr'].iloc[0]:.2f}, min={overall_row['min_adjusted_apr'].iloc[0]:.2f}, max={overall_row['max_adjusted_apr'].iloc[0]:.2f}") | |
return csv_file | |
def generate_statistics_from_data(df): | |
"""Generate statistics from the APR data""" | |
if df.empty: | |
return pd.DataFrame() | |
# Get unique agents | |
unique_agents = df['agent_id'].unique() | |
stats_list = [] | |
# Generate per-agent statistics | |
for agent_id in unique_agents: | |
agent_data = df[df['agent_id'] == agent_id] | |
agent_name = agent_data['agent_name'].iloc[0] | |
# APR statistics | |
apr_data = agent_data[agent_data['metric_type'] == 'APR'] | |
real_apr = apr_data[apr_data['is_dummy'] == False] | |
# Performance statistics | |
perf_data = agent_data[agent_data['metric_type'] == 'Performance'] | |
real_perf = perf_data[perf_data['is_dummy'] == False] | |
# Check if adjusted_apr exists and has non-null values | |
has_adjusted_apr = 'adjusted_apr' in apr_data.columns and apr_data['adjusted_apr'].notna().any() | |
stats = { | |
'agent_id': agent_id, | |
'agent_name': agent_name, | |
'total_points': len(agent_data), | |
'apr_points': len(apr_data), | |
'performance_points': len(perf_data), | |
'real_apr_points': len(real_apr), | |
'real_performance_points': len(real_perf), | |
'avg_apr': apr_data['apr'].mean() if not apr_data.empty else None, | |
'avg_performance': perf_data['apr'].mean() if not perf_data.empty else None, | |
'max_apr': apr_data['apr'].max() if not apr_data.empty else None, | |
'min_apr': apr_data['apr'].min() if not apr_data.empty else None, | |
'avg_adjusted_apr': apr_data['adjusted_apr'].mean() if has_adjusted_apr else None, | |
'max_adjusted_apr': apr_data['adjusted_apr'].max() if has_adjusted_apr else None, | |
'min_adjusted_apr': apr_data['adjusted_apr'].min() if has_adjusted_apr else None, | |
'latest_timestamp': agent_data['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not agent_data.empty else None | |
} | |
stats_list.append(stats) | |
# Generate overall statistics | |
apr_only = df[df['metric_type'] == 'APR'] | |
perf_only = df[df['metric_type'] == 'Performance'] | |
# Check if adjusted_apr exists and has non-null values for overall stats | |
has_adjusted_apr_overall = 'adjusted_apr' in apr_only.columns and apr_only['adjusted_apr'].notna().any() | |
overall_stats = { | |
'agent_id': 'ALL', | |
'agent_name': 'All Agents', | |
'total_points': len(df), | |
'apr_points': len(apr_only), | |
'performance_points': len(perf_only), | |
'real_apr_points': len(apr_only[apr_only['is_dummy'] == False]), | |
'real_performance_points': len(perf_only[perf_only['is_dummy'] == False]), | |
'avg_apr': apr_only['apr'].mean() if not apr_only.empty else None, | |
'avg_performance': perf_only['apr'].mean() if not perf_only.empty else None, | |
'max_apr': apr_only['apr'].max() if not apr_only.empty else None, | |
'min_apr': apr_only['apr'].min() if not apr_only.empty else None, | |
'avg_adjusted_apr': apr_only['adjusted_apr'].mean() if has_adjusted_apr_overall else None, | |
'max_adjusted_apr': apr_only['adjusted_apr'].max() if has_adjusted_apr_overall else None, | |
'min_adjusted_apr': apr_only['adjusted_apr'].min() if has_adjusted_apr_overall else None, | |
'latest_timestamp': df['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not df.empty else None | |
} | |
stats_list.append(overall_stats) | |
return pd.DataFrame(stats_list) | |
# Create dummy functions for the commented out imports | |
def create_transcation_visualizations(): | |
"""Dummy implementation that returns a placeholder graph""" | |
fig = go.Figure() | |
fig.add_annotation( | |
text="Blockchain data loading disabled - placeholder visualization", | |
x=0.5, y=0.5, xref="paper", yref="paper", | |
showarrow=False, font=dict(size=20) | |
) | |
return fig | |
def create_active_agents_visualizations(): | |
"""Dummy implementation that returns a placeholder graph""" | |
fig = go.Figure() | |
fig.add_annotation( | |
text="Blockchain data loading disabled - placeholder visualization", | |
x=0.5, y=0.5, xref="paper", yref="paper", | |
showarrow=False, font=dict(size=20) | |
) | |
return fig | |
# Comment out the blockchain connection code | |
""" | |
# Load environment variables from .env file | |
# RPC URLs | |
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL') | |
MODE_RPC_URL = os.getenv('MODE_RPC_URL') | |
# Initialize Web3 instances | |
web3_instances = { | |
'optimism': Web3(Web3.HTTPProvider(OPTIMISM_RPC_URL)), | |
'mode': Web3(Web3.HTTPProvider(MODE_RPC_URL)) | |
} | |
# Contract addresses for service registries | |
contract_addresses = { | |
'optimism': '0x3d77596beb0f130a4415df3D2D8232B3d3D31e44', | |
'mode': '0x3C1fF68f5aa342D296d4DEe4Bb1cACCA912D95fE' | |
} | |
# Load the ABI from the provided JSON file | |
with open('./contracts/service_registry_abi.json', 'r') as abi_file: | |
contract_abi = json.load(abi_file) | |
# Create the contract instances | |
service_registries = { | |
chain_name: web3.eth.contract(address=contract_addresses[chain_name], abi=contract_abi) | |
for chain_name, web3 in web3_instances.items() | |
} | |
# Check if connections are successful | |
for chain_name, web3_instance in web3_instances.items(): | |
if not web3_instance.is_connected(): | |
raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.") | |
else: | |
print(f"Successfully connected to the {chain_name.capitalize()} network.") | |
""" | |
# Dummy blockchain functions to replace the commented ones | |
def get_transfers(integrator: str, wallet: str) -> str: | |
"""Dummy function that returns an empty result""" | |
return {"transfers": []} | |
def fetch_and_aggregate_transactions(): | |
"""Dummy function that returns empty data""" | |
return [], {} | |
# Function to parse the transaction data and prepare it for visualization | |
def process_transactions_and_agents(data): | |
"""Dummy function that returns empty dataframes""" | |
df_transactions = pd.DataFrame() | |
df_agents = pd.DataFrame(columns=['date', 'agent_count']) | |
df_agents_weekly = pd.DataFrame() | |
return df_transactions, df_agents, df_agents_weekly | |
# Function to create visualizations based on the metrics | |
def create_visualizations(): | |
""" | |
# Commenting out the original visualization code temporarily for debugging | |
transactions_data = fetch_and_aggregate_transactions() | |
df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data) | |
# Fetch daily value locked data | |
df_tvl = pd.read_csv('daily_value_locked.csv') | |
# Calculate total value locked per chain per day | |
df_tvl["total_value_locked_usd"] = df_tvl["amount0_usd"] + df_tvl["amount1_usd"] | |
df_tvl_daily = df_tvl.groupby(["date", "chain_name"])["total_value_locked_usd"].sum().reset_index() | |
df_tvl_daily['date'] = pd.to_datetime(df_tvl_daily['date']) | |
# Filter out dates with zero total value locked | |
df_tvl_daily = df_tvl_daily[df_tvl_daily["total_value_locked_usd"] > 0] | |
chain_name_map = { | |
"mode": "Mode", | |
"base": "Base", | |
"ethereum": "Ethereum", | |
"optimism": "Optimism" | |
} | |
df_tvl_daily["chain_name"] = df_tvl_daily["chain_name"].map(chain_name_map) | |
# Plot total value locked | |
fig_tvl = px.bar( | |
df_tvl_daily, | |
x="date", | |
y="total_value_locked_usd", | |
color="chain_name", | |
opacity=0.7, | |
title="Total Volume Invested in Pools in Different Chains Daily", | |
labels={"date": "Date","chain_name": "Transaction Chain", "total_value_locked_usd": "Total Volume Invested (USD)"}, | |
barmode='stack', | |
color_discrete_map={ | |
"Mode": "orange", | |
"Base": "purple", | |
"Ethereum": "darkgreen", | |
"Optimism": "blue" | |
} | |
) | |
fig_tvl.update_layout( | |
xaxis_title="Date", | |
yaxis=dict(tickmode='linear', tick0=0, dtick=4), | |
xaxis=dict( | |
tickmode='array', | |
tickvals=df_tvl_daily['date'], | |
ticktext=df_tvl_daily['date'].dt.strftime('%b %d'), | |
tickangle=-45, | |
), | |
bargap=0.6, # Increase gap between bar groups (0-1) | |
bargroupgap=0.1, # Decrease gap between bars in a group (0-1) | |
height=600, | |
width=1200, # Specify width to prevent bars from being too wide | |
showlegend=True, | |
template='plotly_white' | |
) | |
fig_tvl.update_xaxes(tickformat="%b %d") | |
chain_name_map = { | |
10: "Optimism", | |
8453: "Base", | |
1: "Ethereum", | |
34443: "Mode" | |
} | |
df_transactions["sending_chain"] = df_transactions["sending_chain"].map(chain_name_map) | |
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].map(chain_name_map) | |
df_transactions["sending_chain"] = df_transactions["sending_chain"].astype(str) | |
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].astype(str) | |
df_transactions['date'] = pd.to_datetime(df_transactions['date']) | |
df_transactions["is_swap"] = df_transactions.apply(lambda x: x["sending_chain"] == x["receiving_chain"], axis=1) | |
swaps_per_chain = df_transactions[df_transactions["is_swap"]].groupby(["date", "sending_chain"]).size().reset_index(name="swap_count") | |
fig_swaps_chain = px.bar( | |
swaps_per_chain, | |
x="date", | |
y="swap_count", | |
color="sending_chain", | |
title="Chain Daily Activity: Swaps", | |
labels={"sending_chain": "Transaction Chain", "swap_count": "Daily Swap Nr"}, | |
barmode="stack", | |
opacity=0.7, | |
color_discrete_map={ | |
"Optimism": "blue", | |
"Ethereum": "darkgreen", | |
"Base": "purple", | |
"Mode": "orange" | |
} | |
) | |
fig_swaps_chain.update_layout( | |
xaxis_title="Date", | |
yaxis_title="Daily Swap Count", | |
yaxis=dict(tickmode='linear', tick0=0, dtick=1), | |
xaxis=dict( | |
tickmode='array', | |
tickvals=[d for d in swaps_per_chain['date']], | |
ticktext=[d.strftime('%m-%d') for d in swaps_per_chain['date']], | |
tickangle=-45, | |
), | |
bargap=0.6, | |
bargroupgap=0.1, | |
height=600, | |
width=1200, | |
margin=dict(l=50, r=50, t=50, b=50), | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
y=0.99, | |
xanchor="right", | |
x=0.99 | |
), | |
template='plotly_white' | |
) | |
fig_swaps_chain.update_xaxes(tickformat="%m-%d") | |
df_transactions["is_bridge"] = df_transactions.apply(lambda x: x["sending_chain"] != x["receiving_chain"], axis=1) | |
bridges_per_chain = df_transactions[df_transactions["is_bridge"]].groupby(["date", "sending_chain"]).size().reset_index(name="bridge_count") | |
fig_bridges_chain = px.bar( | |
bridges_per_chain, | |
x="date", | |
y="bridge_count", | |
color="sending_chain", | |
title="Chain Daily Activity: Bridges", | |
labels={"sending_chain": "Transaction Chain", "bridge_count": "Daily Bridge Nr"}, | |
barmode="stack", | |
opacity=0.7, | |
color_discrete_map={ | |
"Optimism": "blue", | |
"Ethereum": "darkgreen", | |
"Base": "purple", | |
"Mode": "orange" | |
} | |
) | |
fig_bridges_chain.update_layout( | |
xaxis_title="Date", | |
yaxis_title="Daily Bridge Count", | |
yaxis=dict(tickmode='linear', tick0=0, dtick=1), | |
xaxis=dict( | |
tickmode='array', | |
tickvals=[d for d in bridges_per_chain['date']], | |
ticktext=[d.strftime('%m-%d') for d in bridges_per_chain['date']], | |
tickangle=-45, | |
), | |
bargap=0.6, | |
bargroupgap=0.1, | |
height=600, | |
width=1200, | |
margin=dict(l=50, r=50, t=50, b=50), | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
y=0.99, | |
xanchor="right", | |
x=0.99 | |
), | |
template='plotly_white' | |
) | |
fig_bridges_chain.update_xaxes(tickformat="%m-%d") | |
df_agents['date'] = pd.to_datetime(df_agents['date']) | |
daily_agents_df = df_agents.groupby('date').agg({'agent_count': 'sum'}).reset_index() | |
daily_agents_df.rename(columns={'agent_count': 'daily_agent_count'}, inplace=True) | |
# Sort by date to ensure proper running total calculation | |
daily_agents_df = daily_agents_df.sort_values('date') | |
# Create week column | |
daily_agents_df['week'] = daily_agents_df['date'].dt.to_period('W').apply(lambda r: r.start_time) | |
# Calculate running total within each week | |
daily_agents_df['running_weekly_total'] = daily_agents_df.groupby('week')['daily_agent_count'].cumsum() | |
# Create final merged dataframe | |
weekly_merged_df = daily_agents_df.copy() | |
adjustment_date = pd.to_datetime('2024-11-15') | |
weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'daily_agent_count'] -= 1 | |
weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'running_weekly_total'] -= 1 | |
fig_agents_registered = go.Figure(data=[ | |
go.Bar( | |
name='Daily nr of Registered Agents', | |
x=weekly_merged_df['date'].dt.strftime("%b %d"), | |
y=weekly_merged_df['daily_agent_count'], | |
opacity=0.7, | |
marker_color='blue' | |
), | |
go.Bar( | |
name='Weekly Nr of Registered Agents', | |
x=weekly_merged_df['date'].dt.strftime("%b %d"), | |
y=weekly_merged_df['running_weekly_total'], | |
opacity=0.7, | |
marker_color='purple' | |
) | |
]) | |
fig_agents_registered.update_layout( | |
xaxis_title='Date', | |
yaxis_title='Number of Agents', | |
title="Nr of Agents Registered", | |
barmode='group', | |
yaxis=dict(tickmode='linear', tick0=0, dtick=1), | |
xaxis=dict( | |
categoryorder='array', | |
categoryarray=weekly_merged_df['date'].dt.strftime("%b %d"), | |
tickangle=-45 | |
), | |
bargap=0.3, | |
height=600, | |
width=1200, | |
showlegend=True, | |
legend=dict( | |
yanchor="top", | |
xanchor="right", | |
), | |
template='plotly_white', | |
) | |
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl | |
""" | |
# Placeholder figures for testing | |
fig_swaps_chain = go.Figure() | |
fig_swaps_chain.add_annotation( | |
text="Blockchain data loading disabled - placeholder visualization", | |
x=0.5, y=0.5, xref="paper", yref="paper", | |
showarrow=False, font=dict(size=20) | |
) | |
fig_bridges_chain = go.Figure() | |
fig_bridges_chain.add_annotation( | |
text="Blockchain data loading disabled - placeholder visualization", | |
x=0.5, y=0.5, xref="paper", yref="paper", | |
showarrow=False, font=dict(size=20) | |
) | |
fig_agents_registered = go.Figure() | |
fig_agents_registered.add_annotation( | |
text="Blockchain data loading disabled - placeholder visualization", | |
x=0.5, y=0.5, xref="paper", yref="paper", | |
showarrow=False, font=dict(size=20) | |
) | |
fig_tvl = go.Figure() | |
fig_tvl.add_annotation( | |
text="Blockchain data loading disabled - placeholder visualization", | |
x=0.5, y=0.5, xref="paper", yref="paper", | |
showarrow=False, font=dict(size=20) | |
) | |
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered, fig_tvl | |
# Modify dashboard function to make the plot container responsive | |
def dashboard(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# Average Modius Agent Performance") | |
# Create tabs for APR and ROI metrics | |
with gr.Tabs(): | |
# APR Metrics tab | |
with gr.Tab("APR Metrics"): | |
with gr.Column(): | |
refresh_apr_btn = gr.Button("Refresh APR Data") | |
# Create container for plotly figure with responsive sizing | |
with gr.Column(): | |
combined_apr_graph = gr.Plot(label="APR for All Agents", elem_id="responsive_apr_plot") | |
# Create compact toggle controls at the bottom of the graph | |
with gr.Row(visible=True): | |
gr.Markdown("##### Toggle Graph Lines", elem_id="apr_toggle_title") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(elem_id="apr_toggle_container"): | |
with gr.Column(scale=1, min_width=150): | |
apr_toggle = gr.Checkbox(label="APR Average", value=True, elem_id="apr_toggle") | |
with gr.Column(scale=1, min_width=150): | |
adjusted_apr_toggle = gr.Checkbox(label="ETH Adjusted APR Average", value=True, elem_id="adjusted_apr_toggle") | |
# Add a text area for status messages | |
apr_status_text = gr.Textbox(label="Status", value="Ready", interactive=False) | |
# ROI Metrics tab | |
with gr.Tab("ROI Metrics"): | |
with gr.Column(): | |
refresh_roi_btn = gr.Button("Refresh ROI Data") | |
# Create container for plotly figure with responsive sizing | |
with gr.Column(): | |
combined_roi_graph = gr.Plot(label="ROI for All Agents", elem_id="responsive_roi_plot") | |
# Create compact toggle controls at the bottom of the graph | |
with gr.Row(visible=True): | |
gr.Markdown("##### Toggle Graph Lines", elem_id="roi_toggle_title") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(elem_id="roi_toggle_container"): | |
with gr.Column(scale=1, min_width=150): | |
roi_toggle = gr.Checkbox(label="ROI Average", value=True, elem_id="roi_toggle") | |
# Add a text area for status messages | |
roi_status_text = gr.Textbox(label="Status", value="Ready", interactive=False) | |
# Add custom CSS for making the plots responsive | |
gr.HTML(""" | |
<style> | |
/* Make plots responsive */ | |
#responsive_apr_plot, #responsive_roi_plot { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
#responsive_apr_plot > div, #responsive_roi_plot > div { | |
width: 100% !important; | |
height: auto !important; | |
min-height: 500px !important; | |
} | |
/* Toggle checkbox styling */ | |
#apr_toggle .gr-checkbox { | |
accent-color: #e74c3c !important; | |
} | |
#adjusted_apr_toggle .gr-checkbox { | |
accent-color: #2ecc71 !important; | |
} | |
#roi_toggle .gr-checkbox { | |
accent-color: #3498db !important; | |
} | |
/* Make the toggle section more compact */ | |
#apr_toggle_title, #roi_toggle_title { | |
margin-bottom: 0; | |
margin-top: 10px; | |
} | |
#apr_toggle_container, #roi_toggle_container { | |
margin-top: 5px; | |
} | |
/* Style the checkbox labels */ | |
.gr-form.gr-box { | |
border: none !important; | |
background: transparent !important; | |
} | |
/* Make checkboxes and labels appear on the same line */ | |
.gr-checkbox-container { | |
display: flex !important; | |
align-items: center !important; | |
} | |
/* Add colored indicators */ | |
#apr_toggle .gr-checkbox-label::before { | |
content: "●"; | |
color: #e74c3c; | |
margin-right: 5px; | |
} | |
#adjusted_apr_toggle .gr-checkbox-label::before { | |
content: "●"; | |
color: #2ecc71; | |
margin-right: 5px; | |
} | |
#roi_toggle .gr-checkbox-label::before { | |
content: "●"; | |
color: #3498db; | |
margin-right: 5px; | |
} | |
</style> | |
""") | |
# Function to update the APR graph | |
def update_apr_graph(show_apr_ma=True, show_adjusted_apr_ma=True): | |
# Generate visualization and get figure object directly | |
try: | |
combined_fig, _ = generate_apr_visualizations() | |
# Update visibility of traces based on toggle values | |
for i, trace in enumerate(combined_fig.data): | |
# Check if this is a moving average trace | |
if trace.name == 'Average APR (3d window)': | |
trace.visible = show_apr_ma | |
elif trace.name == 'Average ETH Adjusted APR (3d window)': | |
trace.visible = show_adjusted_apr_ma | |
return combined_fig | |
except Exception as e: | |
logger.exception("Error generating APR visualization") | |
# Create error figure | |
error_fig = go.Figure() | |
error_fig.add_annotation( | |
text=f"Error: {str(e)}", | |
x=0.5, y=0.5, | |
showarrow=False, | |
font=dict(size=15, color="red") | |
) | |
return error_fig | |
# Function to update the ROI graph | |
def update_roi_graph(show_roi_ma=True): | |
# Generate visualization and get figure object directly | |
try: | |
combined_fig, _ = generate_roi_visualizations() | |
# Update visibility of traces based on toggle values | |
for i, trace in enumerate(combined_fig.data): | |
# Check if this is a moving average trace | |
if trace.name == 'Average ROI (3d window)': | |
trace.visible = show_roi_ma | |
return combined_fig | |
except Exception as e: | |
logger.exception("Error generating ROI visualization") | |
# Create error figure | |
error_fig = go.Figure() | |
error_fig.add_annotation( | |
text=f"Error: {str(e)}", | |
x=0.5, y=0.5, | |
showarrow=False, | |
font=dict(size=15, color="red") | |
) | |
return error_fig | |
# Initialize the APR graph on load with a placeholder | |
apr_placeholder_fig = go.Figure() | |
apr_placeholder_fig.add_annotation( | |
text="Click 'Refresh APR Data' to load APR graph", | |
x=0.5, y=0.5, | |
showarrow=False, | |
font=dict(size=15) | |
) | |
combined_apr_graph.value = apr_placeholder_fig | |
# Initialize the ROI graph on load with a placeholder | |
roi_placeholder_fig = go.Figure() | |
roi_placeholder_fig.add_annotation( | |
text="Click 'Refresh ROI Data' to load ROI graph", | |
x=0.5, y=0.5, | |
showarrow=False, | |
font=dict(size=15) | |
) | |
combined_roi_graph.value = roi_placeholder_fig | |
# Function to update the APR graph based on toggle states | |
def update_apr_graph_with_toggles(apr_visible, adjusted_apr_visible): | |
return update_apr_graph(apr_visible, adjusted_apr_visible) | |
# Function to update the ROI graph based on toggle states | |
def update_roi_graph_with_toggles(roi_visible): | |
return update_roi_graph(roi_visible) | |
# Function to refresh APR data | |
def refresh_apr_data(): | |
"""Refresh APR data from the database and update the visualization""" | |
try: | |
# Fetch new APR data | |
logger.info("Manually refreshing APR data...") | |
fetch_apr_data_from_db() | |
# Verify data was fetched successfully | |
if global_df is None or len(global_df) == 0: | |
logger.error("Failed to fetch APR data") | |
return combined_apr_graph.value, "Error: Failed to fetch APR data. Check the logs for details." | |
# Log info about fetched data with focus on adjusted_apr | |
may_10_2025 = datetime(2025, 5, 10) | |
if 'timestamp' in global_df and 'adjusted_apr' in global_df: | |
after_may_10 = global_df[global_df['timestamp'] >= may_10_2025] | |
with_adjusted_after_may_10 = after_may_10[after_may_10['adjusted_apr'].notna()] | |
logger.info(f"Data points after May 10th, 2025: {len(after_may_10)}") | |
logger.info(f"Data points with adjusted_apr after May 10th, 2025: {len(with_adjusted_after_may_10)}") | |
# Generate new visualization | |
logger.info("Generating new APR visualization...") | |
new_graph = update_apr_graph(apr_toggle.value, adjusted_apr_toggle.value) | |
return new_graph, "APR data refreshed successfully" | |
except Exception as e: | |
logger.error(f"Error refreshing APR data: {e}") | |
return combined_apr_graph.value, f"Error: {str(e)}" | |
# Function to refresh ROI data | |
def refresh_roi_data(): | |
"""Refresh ROI data from the database and update the visualization""" | |
try: | |
# Fetch new ROI data | |
logger.info("Manually refreshing ROI data...") | |
fetch_apr_data_from_db() # This also fetches ROI data | |
# Verify data was fetched successfully | |
if global_roi_df is None or len(global_roi_df) == 0: | |
logger.error("Failed to fetch ROI data") | |
return combined_roi_graph.value, "Error: Failed to fetch ROI data. Check the logs for details." | |
# Generate new visualization | |
logger.info("Generating new ROI visualization...") | |
new_graph = update_roi_graph(roi_toggle.value) | |
return new_graph, "ROI data refreshed successfully" | |
except Exception as e: | |
logger.error(f"Error refreshing ROI data: {e}") | |
return combined_roi_graph.value, f"Error: {str(e)}" | |
# Set up the button click event for APR refresh | |
refresh_apr_btn.click( | |
fn=refresh_apr_data, | |
inputs=[], | |
outputs=[combined_apr_graph, apr_status_text] | |
) | |
# Set up the button click event for ROI refresh | |
refresh_roi_btn.click( | |
fn=refresh_roi_data, | |
inputs=[], | |
outputs=[combined_roi_graph, roi_status_text] | |
) | |
# Set up the toggle switch events for APR | |
apr_toggle.change( | |
fn=update_apr_graph_with_toggles, | |
inputs=[apr_toggle, adjusted_apr_toggle], | |
outputs=[combined_apr_graph] | |
) | |
adjusted_apr_toggle.change( | |
fn=update_apr_graph_with_toggles, | |
inputs=[apr_toggle, adjusted_apr_toggle], | |
outputs=[combined_apr_graph] | |
) | |
# Set up the toggle switch events for ROI | |
roi_toggle.change( | |
fn=update_roi_graph_with_toggles, | |
inputs=[roi_toggle], | |
outputs=[combined_roi_graph] | |
) | |
return demo | |
# Launch the dashboard | |
if __name__ == "__main__": | |
dashboard().launch() | |
def generate_adjusted_apr_report(): | |
""" | |
Generate a detailed report about adjusted_apr data availability and save it to a file. | |
Returns the path to the generated report file. | |
""" | |
global global_df | |
if global_df is None or global_df.empty or 'adjusted_apr' not in global_df.columns: | |
logger.warning("No adjusted_apr data available for report generation") | |
return None | |
# Create a report file | |
report_path = "adjusted_apr_report.txt" | |
with open(report_path, "w") as f: | |
f.write("======== ADJUSTED APR DATA AVAILABILITY REPORT ========\n\n") | |
# Summary statistics | |
total_records = len(global_df) | |
records_with_adjusted = global_df['adjusted_apr'].notna().sum() | |
pct_with_adjusted = (records_with_adjusted / total_records) * 100 if total_records > 0 else 0 | |
f.write(f"Total APR records: {total_records}\n") | |
f.write(f"Records with adjusted_apr: {records_with_adjusted} ({pct_with_adjusted:.2f}%)\n\n") | |
# First and last data points | |
if records_with_adjusted > 0: | |
has_adjusted = global_df[global_df['adjusted_apr'].notna()] | |
first_date = has_adjusted['timestamp'].min() | |
last_date = has_adjusted['timestamp'].max() | |
f.write(f"First adjusted_apr record: {first_date}\n") | |
f.write(f"Last adjusted_apr record: {last_date}\n") | |
f.write(f"Date range: {(last_date - first_date).days} days\n\n") | |
# Agent statistics | |
f.write("===== AGENT STATISTICS =====\n\n") | |
# Group by agent | |
agent_stats = [] | |
for agent_id in global_df['agent_id'].unique(): | |
agent_data = global_df[global_df['agent_id'] == agent_id] | |
agent_name = agent_data['agent_name'].iloc[0] if not agent_data.empty else f"Agent {agent_id}" | |
total_agent_records = len(agent_data) | |
agent_with_adjusted = agent_data['adjusted_apr'].notna().sum() | |
coverage_pct = (agent_with_adjusted / total_agent_records) * 100 if total_agent_records > 0 else 0 | |
agent_stats.append({ | |
'agent_id': agent_id, | |
'agent_name': agent_name, | |
'total_records': total_agent_records, | |
'with_adjusted': agent_with_adjusted, | |
'coverage_pct': coverage_pct | |
}) | |
# Sort by coverage percentage (descending) | |
agent_stats.sort(key=lambda x: x['coverage_pct'], reverse=True) | |
# Write agent statistics | |
for agent in agent_stats: | |
f.write(f"Agent: {agent['agent_name']} (ID: {agent['agent_id']})\n") | |
f.write(f" Records: {agent['total_records']}\n") | |
f.write(f" With adjusted_apr: {agent['with_adjusted']} ({agent['coverage_pct']:.2f}%)\n") | |
# If agent has adjusted data, show date range | |
agent_data = global_df[global_df['agent_id'] == agent['agent_id']] | |
agent_adjusted = agent_data[agent_data['adjusted_apr'].notna()] | |
if not agent_adjusted.empty: | |
first = agent_adjusted['timestamp'].min() | |
last = agent_adjusted['timestamp'].max() | |
f.write(f" First adjusted_apr: {first}\n") | |
f.write(f" Last adjusted_apr: {last}\n") | |
f.write("\n") | |
# Check for May 10th cutoff issue | |
f.write("===== MAY 10TH CUTOFF ANALYSIS =====\n\n") | |
may_10_2025 = datetime(2025, 5, 10) | |
before_cutoff = global_df[global_df['timestamp'] < may_10_2025] | |
after_cutoff = global_df[global_df['timestamp'] >= may_10_2025] | |
# Calculate coverage before and after | |
before_total = len(before_cutoff) | |
before_with_adjusted = before_cutoff['adjusted_apr'].notna().sum() | |
before_pct = (before_with_adjusted / before_total) * 100 if before_total > 0 else 0 | |
after_total = len(after_cutoff) | |
after_with_adjusted = after_cutoff['adjusted_apr'].notna().sum() | |
after_pct = (after_with_adjusted / after_total) * 100 if after_total > 0 else 0 | |
f.write(f"Before May 10th, 2025:\n") | |
f.write(f" Records: {before_total}\n") | |
f.write(f" With adjusted_apr: {before_with_adjusted} ({before_pct:.2f}%)\n\n") | |
f.write(f"After May 10th, 2025:\n") | |
f.write(f" Records: {after_total}\n") | |
f.write(f" With adjusted_apr: {after_with_adjusted} ({after_pct:.2f}%)\n\n") | |
# Check for agents that had data before but not after | |
if before_total > 0 and after_total > 0: | |
agents_before = set(before_cutoff[before_cutoff['adjusted_apr'].notna()]['agent_id'].unique()) | |
agents_after = set(after_cutoff[after_cutoff['adjusted_apr'].notna()]['agent_id'].unique()) | |
missing_after = agents_before - agents_after | |
new_after = agents_after - agents_before | |
if missing_after: | |
f.write(f"Agents with adjusted_apr before May 10th but not after: {list(missing_after)}\n") | |
# For each missing agent, show the last date with adjusted_apr | |
for agent_id in missing_after: | |
agent_data = before_cutoff[(before_cutoff['agent_id'] == agent_id) & | |
(before_cutoff['adjusted_apr'].notna())] | |
if not agent_data.empty: | |
last_date = agent_data['timestamp'].max() | |
agent_name = agent_data['agent_name'].iloc[0] | |
f.write(f" {agent_name} (ID: {agent_id}): Last adjusted_apr on {last_date}\n") | |
if new_after: | |
f.write(f"\nAgents with adjusted_apr after May 10th but not before: {list(new_after)}\n") | |
logger.info(f"Adjusted APR report generated: {report_path}") | |
return report_path | |