Spaces:
Running
Running
gauravlochab
commited on
Commit
·
044e2c9
1
Parent(s):
9408331
feat: enhance combined time series graph with fixed y-axis range and improved marker handling
Browse files
app.py
CHANGED
@@ -531,16 +531,17 @@ def create_combined_time_series_graph(df):
|
|
531 |
|
532 |
logger.info("Generated detailed graph data report")
|
533 |
|
534 |
-
#
|
|
|
535 |
fig = go.Figure()
|
536 |
|
537 |
# Get unique agents
|
538 |
unique_agents = df['agent_id'].unique()
|
539 |
colors = px.colors.qualitative.Plotly[:len(unique_agents)]
|
540 |
|
541 |
-
# IMPORTANT:
|
542 |
-
min_apr =
|
543 |
-
max_apr =
|
544 |
|
545 |
# Add background shapes for APR and Performance regions
|
546 |
min_time = df['timestamp'].min()
|
@@ -574,6 +575,7 @@ def create_combined_time_series_graph(df):
|
|
574 |
x0=min_time, x1=max_time
|
575 |
)
|
576 |
|
|
|
577 |
# Add data for each agent
|
578 |
for i, agent_id in enumerate(unique_agents):
|
579 |
agent_data = df[df['agent_id'] == agent_id].copy()
|
@@ -588,7 +590,67 @@ def create_combined_time_series_graph(df):
|
|
588 |
for idx, row in agent_data.iterrows():
|
589 |
logger.info(f" Point {idx}: timestamp={row['timestamp']}, apr={row['apr']}, type={row['metric_type']}")
|
590 |
|
591 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
592 |
fig.add_trace(
|
593 |
go.Scatter(
|
594 |
x=agent_data['timestamp'],
|
@@ -600,50 +662,8 @@ def create_combined_time_series_graph(df):
|
|
600 |
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
|
601 |
)
|
602 |
)
|
603 |
-
|
604 |
-
# Add scatter points for APR values
|
605 |
-
apr_data = agent_data[agent_data['metric_type'] == 'APR']
|
606 |
-
if not apr_data.empty:
|
607 |
-
logger.info(f" Adding {len(apr_data)} APR markers for {agent_name}")
|
608 |
-
for idx, row in apr_data.iterrows():
|
609 |
-
logger.info(f" APR marker: timestamp={row['timestamp']}, apr={row['apr']}")
|
610 |
-
|
611 |
-
fig.add_trace(
|
612 |
-
go.Scatter(
|
613 |
-
x=apr_data['timestamp'],
|
614 |
-
y=apr_data['apr'],
|
615 |
-
mode='markers',
|
616 |
-
marker=dict(color=color, symbol='circle', size=10),
|
617 |
-
name=f'{agent_name} APR',
|
618 |
-
legendgroup=agent_name,
|
619 |
-
showlegend=False,
|
620 |
-
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
|
621 |
-
visible=True # Explicitly set visibility
|
622 |
-
)
|
623 |
-
)
|
624 |
-
|
625 |
-
# Add scatter points for Performance values
|
626 |
-
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
|
627 |
-
if not perf_data.empty:
|
628 |
-
logger.info(f" Adding {len(perf_data)} Performance markers for {agent_name}")
|
629 |
-
for idx, row in perf_data.iterrows():
|
630 |
-
logger.info(f" Performance marker: timestamp={row['timestamp']}, apr={row['apr']}")
|
631 |
-
|
632 |
-
fig.add_trace(
|
633 |
-
go.Scatter(
|
634 |
-
x=perf_data['timestamp'],
|
635 |
-
y=perf_data['apr'],
|
636 |
-
mode='markers',
|
637 |
-
marker=dict(color=color, symbol='square', size=10),
|
638 |
-
name=f'{agent_name} Perf',
|
639 |
-
legendgroup=agent_name,
|
640 |
-
showlegend=False,
|
641 |
-
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
|
642 |
-
visible=True # Explicitly set visibility
|
643 |
-
)
|
644 |
-
)
|
645 |
|
646 |
-
# Update layout
|
647 |
fig.update_layout(
|
648 |
title="APR and Performance Values for All Agents",
|
649 |
xaxis_title="Time",
|
@@ -663,33 +683,91 @@ def create_combined_time_series_graph(df):
|
|
663 |
hovermode="closest"
|
664 |
)
|
665 |
|
666 |
-
#
|
667 |
-
y_padding = (max_apr - min_apr) * 0.1 # 10% padding
|
668 |
fig.update_yaxes(
|
669 |
showgrid=True,
|
670 |
gridwidth=1,
|
671 |
gridcolor='rgba(0,0,0,0.1)',
|
672 |
-
range=[min_apr
|
|
|
|
|
|
|
673 |
)
|
674 |
|
675 |
# Update x-axis
|
676 |
-
fig.update_xaxes(
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
|
682 |
-
#
|
683 |
-
|
684 |
try:
|
685 |
-
|
686 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
687 |
except Exception as e:
|
688 |
-
|
689 |
-
logger.
|
690 |
-
|
691 |
-
|
692 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
693 |
|
694 |
def save_to_csv(df):
|
695 |
"""Save the APR data DataFrame to a CSV file and return the file path"""
|
|
|
531 |
|
532 |
logger.info("Generated detailed graph data report")
|
533 |
|
534 |
+
# ENSURE THERE ARE NO CONFLICTING AXES OR TRACES
|
535 |
+
# Create Plotly figure in a clean state
|
536 |
fig = go.Figure()
|
537 |
|
538 |
# Get unique agents
|
539 |
unique_agents = df['agent_id'].unique()
|
540 |
colors = px.colors.qualitative.Plotly[:len(unique_agents)]
|
541 |
|
542 |
+
# IMPORTANT: Fixed y-axis range that always includes -100
|
543 |
+
min_apr = -110 # Fixed minimum to ensure -100 is visible
|
544 |
+
max_apr = 110 # Fixed maximum to ensure data is visible
|
545 |
|
546 |
# Add background shapes for APR and Performance regions
|
547 |
min_time = df['timestamp'].min()
|
|
|
575 |
x0=min_time, x1=max_time
|
576 |
)
|
577 |
|
578 |
+
# MODIFIED: Changed order of trace addition - add markers first, then lines
|
579 |
# Add data for each agent
|
580 |
for i, agent_id in enumerate(unique_agents):
|
581 |
agent_data = df[df['agent_id'] == agent_id].copy()
|
|
|
590 |
for idx, row in agent_data.iterrows():
|
591 |
logger.info(f" Point {idx}: timestamp={row['timestamp']}, apr={row['apr']}, type={row['metric_type']}")
|
592 |
|
593 |
+
# First add scatter points for Performance values
|
594 |
+
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
|
595 |
+
if not perf_data.empty:
|
596 |
+
logger.info(f" Adding {len(perf_data)} Performance markers for {agent_name}")
|
597 |
+
for idx, row in perf_data.iterrows():
|
598 |
+
logger.info(f" Performance marker: timestamp={row['timestamp']}, apr={row['apr']}")
|
599 |
+
|
600 |
+
# Use explicit Python boolean for showlegend
|
601 |
+
is_first_point = bool(idx == perf_data.index[0])
|
602 |
+
fig.add_trace(
|
603 |
+
go.Scatter(
|
604 |
+
x=[row['timestamp']],
|
605 |
+
y=[row['apr']],
|
606 |
+
mode='markers',
|
607 |
+
marker=dict(
|
608 |
+
color='red', # Force consistent color
|
609 |
+
symbol='square',
|
610 |
+
size=16, # Make markers larger
|
611 |
+
line=dict(
|
612 |
+
width=2,
|
613 |
+
color='black'
|
614 |
+
)
|
615 |
+
),
|
616 |
+
name=f'{agent_name} Perf',
|
617 |
+
legendgroup=agent_name,
|
618 |
+
showlegend=is_first_point, # Use native Python boolean
|
619 |
+
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
|
620 |
+
)
|
621 |
+
)
|
622 |
+
|
623 |
+
# Now add scatter points for APR values
|
624 |
+
apr_data = agent_data[agent_data['metric_type'] == 'APR']
|
625 |
+
if not apr_data.empty:
|
626 |
+
logger.info(f" Adding {len(apr_data)} APR markers for {agent_name}")
|
627 |
+
for idx, row in apr_data.iterrows():
|
628 |
+
logger.info(f" APR marker: timestamp={row['timestamp']}, apr={row['apr']}")
|
629 |
+
|
630 |
+
# Use explicit Python boolean for showlegend
|
631 |
+
is_first_point = bool(idx == apr_data.index[0])
|
632 |
+
fig.add_trace(
|
633 |
+
go.Scatter(
|
634 |
+
x=[row['timestamp']],
|
635 |
+
y=[row['apr']],
|
636 |
+
mode='markers',
|
637 |
+
marker=dict(
|
638 |
+
color='blue', # Force consistent color
|
639 |
+
symbol='circle',
|
640 |
+
size=14, # Make markers larger
|
641 |
+
line=dict(
|
642 |
+
width=2,
|
643 |
+
color='black'
|
644 |
+
)
|
645 |
+
),
|
646 |
+
name=f'{agent_name} APR',
|
647 |
+
legendgroup=agent_name,
|
648 |
+
showlegend=is_first_point, # Use native Python boolean
|
649 |
+
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
|
650 |
+
)
|
651 |
+
)
|
652 |
+
|
653 |
+
# Add the combined line AFTER markers for both APR and Performance
|
654 |
fig.add_trace(
|
655 |
go.Scatter(
|
656 |
x=agent_data['timestamp'],
|
|
|
662 |
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
|
663 |
)
|
664 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
665 |
|
666 |
+
# Update layout - use simple boolean values everywhere
|
667 |
fig.update_layout(
|
668 |
title="APR and Performance Values for All Agents",
|
669 |
xaxis_title="Time",
|
|
|
683 |
hovermode="closest"
|
684 |
)
|
685 |
|
686 |
+
# FORCE FIXED Y-AXIS RANGE
|
|
|
687 |
fig.update_yaxes(
|
688 |
showgrid=True,
|
689 |
gridwidth=1,
|
690 |
gridcolor='rgba(0,0,0,0.1)',
|
691 |
+
range=[min_apr, max_apr], # Fixed range
|
692 |
+
tickmode='linear',
|
693 |
+
tick0=-100,
|
694 |
+
dtick=50
|
695 |
)
|
696 |
|
697 |
# Update x-axis
|
698 |
+
fig.update_xaxes(
|
699 |
+
showgrid=True,
|
700 |
+
gridwidth=1,
|
701 |
+
gridcolor='rgba(0,0,0,0.1)'
|
702 |
+
)
|
703 |
|
704 |
+
# SIMPLIFIED APPROACH: Do a direct plot without markers for comparison
|
705 |
+
# This creates a simple, reliable fallback plot if the advanced one fails
|
706 |
try:
|
707 |
+
# Save the figure (still useful for reference)
|
708 |
+
graph_file = "modius_apr_combined_graph.html"
|
709 |
+
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
|
710 |
+
|
711 |
+
# Also save as image for compatibility
|
712 |
+
img_file = "modius_apr_combined_graph.png"
|
713 |
+
try:
|
714 |
+
fig.write_image(img_file)
|
715 |
+
logger.info(f"Combined graph saved to {graph_file} and {img_file}")
|
716 |
+
except Exception as e:
|
717 |
+
logger.error(f"Error saving image: {e}")
|
718 |
+
logger.info(f"Combined graph saved to {graph_file} only")
|
719 |
+
|
720 |
+
# Return the figure object for direct use in Gradio
|
721 |
+
return fig
|
722 |
except Exception as e:
|
723 |
+
# If the complex graph approach fails, create a simpler one
|
724 |
+
logger.error(f"Error creating advanced graph: {e}")
|
725 |
+
logger.info("Falling back to simpler graph")
|
726 |
+
|
727 |
+
# Create a simpler graph as fallback
|
728 |
+
simple_fig = go.Figure()
|
729 |
+
|
730 |
+
# Add zero line
|
731 |
+
simple_fig.add_shape(
|
732 |
+
type="line",
|
733 |
+
line=dict(dash="solid", width=1.5, color="black"),
|
734 |
+
y0=0, y1=0,
|
735 |
+
x0=min_time, x1=max_time
|
736 |
+
)
|
737 |
+
|
738 |
+
# Simply plot each agent's data as a line with markers
|
739 |
+
for i, agent_id in enumerate(unique_agents):
|
740 |
+
agent_data = df[df['agent_id'] == agent_id].copy()
|
741 |
+
agent_name = agent_data['agent_name'].iloc[0]
|
742 |
+
color = colors[i % len(colors)]
|
743 |
+
|
744 |
+
# Sort by timestamp
|
745 |
+
agent_data = agent_data.sort_values('timestamp')
|
746 |
+
|
747 |
+
# Add a single trace with markers+lines
|
748 |
+
simple_fig.add_trace(
|
749 |
+
go.Scatter(
|
750 |
+
x=agent_data['timestamp'],
|
751 |
+
y=agent_data['apr'],
|
752 |
+
mode='lines+markers',
|
753 |
+
name=agent_name,
|
754 |
+
marker=dict(size=10),
|
755 |
+
line=dict(width=2)
|
756 |
+
)
|
757 |
+
)
|
758 |
+
|
759 |
+
# Simplified layout
|
760 |
+
simple_fig.update_layout(
|
761 |
+
title="APR and Performance Values (Simplified View)",
|
762 |
+
xaxis_title="Time",
|
763 |
+
yaxis_title="Value",
|
764 |
+
yaxis=dict(range=[-110, 110]),
|
765 |
+
height=600,
|
766 |
+
width=1000
|
767 |
+
)
|
768 |
+
|
769 |
+
# Return the simple figure
|
770 |
+
return simple_fig
|
771 |
|
772 |
def save_to_csv(df):
|
773 |
"""Save the APR data DataFrame to a CSV file and return the file path"""
|