Spaces:
Running
Running
gauravlochab
commited on
Commit
·
398c34c
1
Parent(s):
b028096
chore: missing adjusted apr data
Browse files
app.py
CHANGED
@@ -267,12 +267,158 @@ def fetch_apr_data_from_db():
|
|
267 |
# Log that we're skipping zero or -100 values
|
268 |
logger.debug(f"Skipping value for agent {agent_name} ({attr['agent_id']}): {apr_data['apr']} (zero or -100)")
|
269 |
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
if not apr_data_list:
|
272 |
logger.error("No valid APR data extracted")
|
273 |
global_df = pd.DataFrame([])
|
274 |
return global_df
|
275 |
|
|
|
276 |
global_df = pd.DataFrame(apr_data_list)
|
277 |
|
278 |
# Log the resulting dataframe
|
@@ -291,9 +437,7 @@ def fetch_apr_data_from_db():
|
|
291 |
avg_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).mean()
|
292 |
max_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).max()
|
293 |
min_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).min()
|
294 |
-
logger.info(f"APR vs
|
295 |
-
else:
|
296 |
-
logger.info("No adjusted APR values found in the data")
|
297 |
|
298 |
# All values are APR type (excluding zero and -100 values)
|
299 |
logger.info("All values are APR type (excluding zero and -100 values)")
|
@@ -304,6 +448,10 @@ def fetch_apr_data_from_db():
|
|
304 |
for idx, row in global_df.iterrows():
|
305 |
logger.debug(f"Row {idx}: {row.to_dict()}")
|
306 |
|
|
|
|
|
|
|
|
|
307 |
return global_df
|
308 |
|
309 |
except requests.exceptions.RequestException as e:
|
@@ -312,10 +460,146 @@ def fetch_apr_data_from_db():
|
|
312 |
return global_df
|
313 |
except Exception as e:
|
314 |
logger.error(f"Error fetching APR data: {e}")
|
315 |
-
logger.exception("Exception
|
316 |
global_df = pd.DataFrame([])
|
317 |
return global_df
|
318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
def generate_apr_visualizations():
|
320 |
"""Generate APR visualizations with real data only (no dummy data)"""
|
321 |
global global_df
|
@@ -650,6 +934,9 @@ def create_combined_time_series_graph(df):
|
|
650 |
avg_apr_data_with_ma['moving_avg'] = None # 3-day window for APR
|
651 |
avg_apr_data_with_ma['adjusted_moving_avg'] = None # 3-day window for adjusted APR
|
652 |
|
|
|
|
|
|
|
653 |
# Calculate the moving averages for each timestamp
|
654 |
for i, row in avg_apr_data_with_ma.iterrows():
|
655 |
current_time = row['timestamp']
|
@@ -667,9 +954,18 @@ def create_combined_time_series_graph(df):
|
|
667 |
logger.debug(f"APR time window {window_start} to {current_time}: {len(window_data)} points, avg={window_data['apr'].mean()}")
|
668 |
|
669 |
# Calculate adjusted APR moving average if data exists
|
670 |
-
|
671 |
-
|
672 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
673 |
else:
|
674 |
# If no data points in the window, use the current value
|
675 |
avg_apr_data_with_ma.at[i, 'moving_avg'] = row['apr']
|
@@ -776,11 +1072,18 @@ def create_combined_time_series_graph(df):
|
|
776 |
|
777 |
# Add adjusted APR moving average line if it exists
|
778 |
if 'adjusted_moving_avg' in avg_apr_data_with_ma.columns and avg_apr_data_with_ma['adjusted_moving_avg'].notna().any():
|
779 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
780 |
|
781 |
# Create hover template for the adjusted APR moving average line
|
782 |
hover_data_adj = []
|
783 |
-
for idx, row in
|
784 |
timestamp = row['timestamp']
|
785 |
if pd.notna(row['adjusted_moving_avg']):
|
786 |
hover_data_adj.append(
|
@@ -793,7 +1096,7 @@ def create_combined_time_series_graph(df):
|
|
793 |
|
794 |
fig.add_trace(
|
795 |
go.Scatter(
|
796 |
-
x=
|
797 |
y=y_values_adj_ma,
|
798 |
mode='lines', # Only lines for moving average
|
799 |
line=dict(color='green', width=4), # Thicker solid line for adjusted APR
|
@@ -803,7 +1106,9 @@ def create_combined_time_series_graph(df):
|
|
803 |
visible=True # Visible by default
|
804 |
)
|
805 |
)
|
806 |
-
logger.info(f"Added 3-day moving average Adjusted APR trace with {len(
|
|
|
|
|
807 |
|
808 |
# Removed cumulative APR as requested
|
809 |
logger.info("Cumulative APR graph line has been removed as requested")
|
@@ -1728,10 +2033,43 @@ def dashboard():
|
|
1728 |
|
1729 |
# Function to update the graph without parameters (for refresh button)
|
1730 |
def refresh_graph():
|
1731 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1732 |
|
1733 |
-
# Set up the button click event
|
1734 |
-
refresh_btn.click(
|
|
|
|
|
|
|
|
|
1735 |
|
1736 |
# Set up the toggle switch events
|
1737 |
apr_toggle.change(
|
@@ -1751,3 +2089,130 @@ def dashboard():
|
|
1751 |
# Launch the dashboard
|
1752 |
if __name__ == "__main__":
|
1753 |
dashboard().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
# Log that we're skipping zero or -100 values
|
268 |
logger.debug(f"Skipping value for agent {agent_name} ({attr['agent_id']}): {apr_data['apr']} (zero or -100)")
|
269 |
|
270 |
+
logger.info(f"Extracted {len(apr_data_list)} valid APR data points")
|
271 |
+
|
272 |
+
# Added debug for adjusted APR data after May 10th
|
273 |
+
may_10_2025 = datetime(2025, 5, 10)
|
274 |
+
after_may_10 = [d for d in apr_data_list if d['timestamp'] >= may_10_2025]
|
275 |
+
with_adjusted_after_may_10 = [d for d in after_may_10 if d['adjusted_apr'] is not None]
|
276 |
+
|
277 |
+
logger.info(f"Data points after May 10th, 2025: {len(after_may_10)}")
|
278 |
+
logger.info(f"Data points with adjusted_apr after May 10th, 2025: {len(with_adjusted_after_may_10)}")
|
279 |
+
|
280 |
+
# Log detailed information about when data began
|
281 |
+
first_adjusted = None
|
282 |
+
if with_adjusted_after_may_10:
|
283 |
+
first_adjusted_after = min(with_adjusted_after_may_10, key=lambda x: x['timestamp'])
|
284 |
+
logger.info(f"First adjusted_apr after May 10th: {first_adjusted_after['timestamp']} (Agent: {first_adjusted_after['agent_id']})")
|
285 |
+
|
286 |
+
# Check all data for first adjusted_apr
|
287 |
+
all_with_adjusted = [d for d in apr_data_list if d['adjusted_apr'] is not None]
|
288 |
+
if all_with_adjusted:
|
289 |
+
first_adjusted = min(all_with_adjusted, key=lambda x: x['timestamp'])
|
290 |
+
logger.info(f"First adjusted_apr ever: {first_adjusted['timestamp']} (Agent: {first_adjusted['agent_id']})")
|
291 |
+
last_adjusted = max(all_with_adjusted, key=lambda x: x['timestamp'])
|
292 |
+
logger.info(f"Last adjusted_apr ever: {last_adjusted['timestamp']} (Agent: {last_adjusted['agent_id']})")
|
293 |
+
|
294 |
+
# Calculate overall coverage
|
295 |
+
adjusted_ratio = len(all_with_adjusted) / len(apr_data_list) * 100
|
296 |
+
logger.info(f"Overall adjusted_apr coverage: {adjusted_ratio:.2f}% ({len(all_with_adjusted)}/{len(apr_data_list)} records)")
|
297 |
+
|
298 |
+
# Log per-agent adjusted APR statistics
|
299 |
+
agent_stats = {}
|
300 |
+
for record in apr_data_list:
|
301 |
+
agent_id = record['agent_id']
|
302 |
+
has_adjusted = record['adjusted_apr'] is not None
|
303 |
+
|
304 |
+
if agent_id not in agent_stats:
|
305 |
+
agent_stats[agent_id] = {'total': 0, 'adjusted': 0}
|
306 |
+
|
307 |
+
agent_stats[agent_id]['total'] += 1
|
308 |
+
if has_adjusted:
|
309 |
+
agent_stats[agent_id]['adjusted'] += 1
|
310 |
+
|
311 |
+
# Log stats for agents with meaningful data
|
312 |
+
for agent_id, stats in agent_stats.items():
|
313 |
+
if stats['total'] > 0:
|
314 |
+
coverage = (stats['adjusted'] / stats['total']) * 100
|
315 |
+
if coverage > 0: # Only log agents that have at least some adjusted data
|
316 |
+
logger.info(f"Agent {agent_id}: {coverage:.2f}% adjusted coverage ({stats['adjusted']}/{stats['total']} records)")
|
317 |
+
|
318 |
+
# Check for gaps in adjusted APR data
|
319 |
+
for agent_id in agent_stats:
|
320 |
+
# Get all records for this agent
|
321 |
+
agent_records = [r for r in apr_data_list if r['agent_id'] == agent_id]
|
322 |
+
# Sort by timestamp
|
323 |
+
agent_records.sort(key=lambda x: x['timestamp'])
|
324 |
+
|
325 |
+
# Find where adjusted APR starts and if there are gaps
|
326 |
+
has_adjusted = False
|
327 |
+
gap_count = 0
|
328 |
+
streak_length = 0
|
329 |
+
for record in agent_records:
|
330 |
+
if record['adjusted_apr'] is not None:
|
331 |
+
if not has_adjusted:
|
332 |
+
has_adjusted = True
|
333 |
+
logger.info(f"Agent {agent_id}: First adjusted APR at {record['timestamp']}")
|
334 |
+
streak_length += 1
|
335 |
+
elif has_adjusted:
|
336 |
+
# We had adjusted data but now it's missing
|
337 |
+
gap_count += 1
|
338 |
+
if streak_length > 0:
|
339 |
+
logger.warning(f"Agent {agent_id}: Gap in adjusted APR data after {streak_length} consecutive records")
|
340 |
+
streak_length = 0
|
341 |
+
|
342 |
+
if gap_count > 0:
|
343 |
+
logger.warning(f"Agent {agent_id}: Found {gap_count} gaps in adjusted APR data")
|
344 |
+
elif has_adjusted:
|
345 |
+
logger.info(f"Agent {agent_id}: Continuous adjusted APR data with no gaps")
|
346 |
+
|
347 |
+
# Provide summary statistics
|
348 |
+
agents_with_data = sum(1 for stats in agent_stats.values() if stats['adjusted'] > 0)
|
349 |
+
agents_with_gaps = sum(1 for agent_id in agent_stats if
|
350 |
+
any(apr_data_list[i]['agent_id'] == agent_id and apr_data_list[i]['adjusted_apr'] is not None and
|
351 |
+
i+1 < len(apr_data_list) and apr_data_list[i+1]['agent_id'] == agent_id and
|
352 |
+
apr_data_list[i+1]['adjusted_apr'] is None
|
353 |
+
for i in range(len(apr_data_list)-1)))
|
354 |
+
|
355 |
+
logger.info(f"ADJUSTED APR SUMMARY: {agents_with_data}/{len(agent_stats)} agents have adjusted APR data")
|
356 |
+
if agents_with_gaps > 0:
|
357 |
+
logger.warning(f"ATTENTION: {agents_with_gaps} agents have gaps in their adjusted APR data")
|
358 |
+
logger.warning("These gaps may cause discontinuities in the adjusted APR graph")
|
359 |
+
else:
|
360 |
+
logger.info("No gaps detected in adjusted APR data - graph should be continuous")
|
361 |
+
|
362 |
+
if len(with_adjusted_after_may_10) == 0 and len(after_may_10) > 0:
|
363 |
+
logger.warning("No adjusted_apr values found after May 10th, 2025 despite having APR data")
|
364 |
+
|
365 |
+
# Log agent IDs with missing adjusted_apr after May 10th
|
366 |
+
agents_after_may_10 = set(d['agent_id'] for d in after_may_10)
|
367 |
+
logger.info(f"Agents with data after May 10th: {agents_after_may_10}")
|
368 |
+
|
369 |
+
# Check these same agents before May 10th
|
370 |
+
before_may_10 = [d for d in apr_data_list if d['timestamp'] < may_10_2025]
|
371 |
+
agents_with_adjusted_before = {d['agent_id'] for d in before_may_10 if d['adjusted_apr'] is not None}
|
372 |
+
|
373 |
+
# Agents that had adjusted_apr before but not after
|
374 |
+
missing_adjusted = agents_with_adjusted_before.intersection(agents_after_may_10)
|
375 |
+
if missing_adjusted:
|
376 |
+
logger.warning(f"Agents that had adjusted_apr before May 10th but not after: {missing_adjusted}")
|
377 |
+
|
378 |
+
# Find the last valid adjusted_apr date for these agents
|
379 |
+
for agent_id in missing_adjusted:
|
380 |
+
agent_data = [d for d in before_may_10 if d['agent_id'] == agent_id and d['adjusted_apr'] is not None]
|
381 |
+
if agent_data:
|
382 |
+
last_entry = max(agent_data, key=lambda d: d['timestamp'])
|
383 |
+
logger.info(f"Agent {agent_id}: Last adjusted_apr on {last_entry['timestamp']} with value {last_entry['adjusted_apr']}")
|
384 |
+
|
385 |
+
# Look at the first entry after the cutoff without adjusted_apr
|
386 |
+
agent_after = [d for d in after_may_10 if d['agent_id'] == agent_id]
|
387 |
+
if agent_after:
|
388 |
+
first_after = min(agent_after, key=lambda d: d['timestamp'])
|
389 |
+
logger.info(f"Agent {agent_id}: First entry after cutoff on {first_after['timestamp']} missing adjusted_apr")
|
390 |
+
|
391 |
+
# If the agent data has the 'adjusted_apr_key' field, log that info
|
392 |
+
if 'adjusted_apr_key' in first_after:
|
393 |
+
logger.info(f"Agent {agent_id}: Key used for adjusted_apr: {first_after['adjusted_apr_key']}")
|
394 |
+
|
395 |
+
# Add debug logic to check for any adjusted_apr after May 10th and which agents have it
|
396 |
+
elif len(with_adjusted_after_may_10) > 0:
|
397 |
+
logger.info("Found adjusted_apr values after May 10th, 2025")
|
398 |
+
|
399 |
+
# Group by agent and log
|
400 |
+
agent_counts = {}
|
401 |
+
for item in with_adjusted_after_may_10:
|
402 |
+
agent_id = item['agent_id']
|
403 |
+
if agent_id in agent_counts:
|
404 |
+
agent_counts[agent_id] += 1
|
405 |
+
else:
|
406 |
+
agent_counts[agent_id] = 1
|
407 |
+
|
408 |
+
logger.info(f"Agents with adjusted_apr after May 10th: {agent_counts}")
|
409 |
+
|
410 |
+
# Log adjusted_apr keys used
|
411 |
+
keys_used = {item.get('adjusted_apr_key') for item in with_adjusted_after_may_10 if 'adjusted_apr_key' in item}
|
412 |
+
if keys_used:
|
413 |
+
logger.info(f"Keys used for adjusted_apr after May 10th: {keys_used}")
|
414 |
+
|
415 |
+
# Convert to DataFrame
|
416 |
if not apr_data_list:
|
417 |
logger.error("No valid APR data extracted")
|
418 |
global_df = pd.DataFrame([])
|
419 |
return global_df
|
420 |
|
421 |
+
# Convert list of dictionaries to DataFrame
|
422 |
global_df = pd.DataFrame(apr_data_list)
|
423 |
|
424 |
# Log the resulting dataframe
|
|
|
437 |
avg_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).mean()
|
438 |
max_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).max()
|
439 |
min_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).min()
|
440 |
+
logger.info(f"APR vs. adjusted APR difference: avg={avg_diff:.2f}, min={min_diff:.2f}, max={max_diff:.2f}")
|
|
|
|
|
441 |
|
442 |
# All values are APR type (excluding zero and -100 values)
|
443 |
logger.info("All values are APR type (excluding zero and -100 values)")
|
|
|
448 |
for idx, row in global_df.iterrows():
|
449 |
logger.debug(f"Row {idx}: {row.to_dict()}")
|
450 |
|
451 |
+
# Add this at the end, right before returning the global_df
|
452 |
+
logger.info("Analyzing adjusted_apr data availability...")
|
453 |
+
log_adjusted_apr_availability(global_df)
|
454 |
+
|
455 |
return global_df
|
456 |
|
457 |
except requests.exceptions.RequestException as e:
|
|
|
460 |
return global_df
|
461 |
except Exception as e:
|
462 |
logger.error(f"Error fetching APR data: {e}")
|
463 |
+
logger.exception("Exception traceback:")
|
464 |
global_df = pd.DataFrame([])
|
465 |
return global_df
|
466 |
|
467 |
+
def log_adjusted_apr_availability(df):
|
468 |
+
"""
|
469 |
+
Analyzes and logs detailed information about adjusted_apr data availability.
|
470 |
+
|
471 |
+
Args:
|
472 |
+
df: DataFrame containing the APR data with adjusted_apr column
|
473 |
+
"""
|
474 |
+
if df.empty or 'adjusted_apr' not in df.columns:
|
475 |
+
logger.warning("No adjusted_apr data available for analysis")
|
476 |
+
return
|
477 |
+
|
478 |
+
# Get only rows with valid adjusted_apr values
|
479 |
+
has_adjusted = df[df['adjusted_apr'].notna()]
|
480 |
+
|
481 |
+
if has_adjusted.empty:
|
482 |
+
logger.warning("No valid adjusted_apr values found in the dataset")
|
483 |
+
return
|
484 |
+
|
485 |
+
# 1. When did adjusted_apr data start?
|
486 |
+
first_adjusted = has_adjusted['timestamp'].min()
|
487 |
+
last_adjusted = has_adjusted['timestamp'].max()
|
488 |
+
logger.info(f"ADJUSTED APR SUMMARY: First data point: {first_adjusted}")
|
489 |
+
logger.info(f"ADJUSTED APR SUMMARY: Last data point: {last_adjusted}")
|
490 |
+
logger.info(f"ADJUSTED APR SUMMARY: Data spans {(last_adjusted - first_adjusted).days} days")
|
491 |
+
|
492 |
+
# Calculate coverage percentage
|
493 |
+
total_records = len(df)
|
494 |
+
records_with_adjusted = len(has_adjusted)
|
495 |
+
coverage_pct = (records_with_adjusted / total_records) * 100 if total_records > 0 else 0
|
496 |
+
logger.info(f"ADJUSTED APR SUMMARY: {records_with_adjusted} out of {total_records} records have adjusted_apr ({coverage_pct:.2f}%)")
|
497 |
+
|
498 |
+
# 2. How many agents are providing adjusted_apr?
|
499 |
+
agents_with_adjusted = has_adjusted['agent_id'].unique()
|
500 |
+
logger.info(f"ADJUSTED APR SUMMARY: {len(agents_with_adjusted)} agents providing adjusted_apr")
|
501 |
+
logger.info(f"ADJUSTED APR SUMMARY: Agents providing adjusted_apr: {list(agents_with_adjusted)}")
|
502 |
+
|
503 |
+
# 3. May 10th cutoff analysis
|
504 |
+
may_10_2025 = datetime(2025, 5, 10)
|
505 |
+
before_cutoff = df[df['timestamp'] < may_10_2025]
|
506 |
+
after_cutoff = df[df['timestamp'] >= may_10_2025]
|
507 |
+
|
508 |
+
if not before_cutoff.empty and not after_cutoff.empty:
|
509 |
+
before_with_adjusted = before_cutoff['adjusted_apr'].notna().sum()
|
510 |
+
before_pct = (before_with_adjusted / len(before_cutoff)) * 100
|
511 |
+
|
512 |
+
after_with_adjusted = after_cutoff['adjusted_apr'].notna().sum()
|
513 |
+
after_pct = (after_with_adjusted / len(after_cutoff)) * 100
|
514 |
+
|
515 |
+
logger.info(f"ADJUSTED APR SUMMARY: Before May 10th: {before_with_adjusted}/{len(before_cutoff)} records with adjusted_apr ({before_pct:.2f}%)")
|
516 |
+
logger.info(f"ADJUSTED APR SUMMARY: After May 10th: {after_with_adjusted}/{len(after_cutoff)} records with adjusted_apr ({after_pct:.2f}%)")
|
517 |
+
|
518 |
+
# Check which agents had data before and after
|
519 |
+
agents_before = set(before_cutoff[before_cutoff['adjusted_apr'].notna()]['agent_id'].unique())
|
520 |
+
agents_after = set(after_cutoff[after_cutoff['adjusted_apr'].notna()]['agent_id'].unique())
|
521 |
+
|
522 |
+
missing_after = agents_before - agents_after
|
523 |
+
if missing_after:
|
524 |
+
logger.warning(f"ADJUSTED APR SUMMARY: {len(missing_after)} agents stopped providing adjusted_apr after May 10th: {list(missing_after)}")
|
525 |
+
|
526 |
+
new_after = agents_after - agents_before
|
527 |
+
if new_after:
|
528 |
+
logger.info(f"ADJUSTED APR SUMMARY: {len(new_after)} agents started providing adjusted_apr after May 10th: {list(new_after)}")
|
529 |
+
|
530 |
+
# 4. Find date ranges for missing adjusted_apr
|
531 |
+
# Group by agent to analyze per-agent data availability
|
532 |
+
logger.info("=== DETAILED AGENT ANALYSIS ===")
|
533 |
+
for agent_id in df['agent_id'].unique():
|
534 |
+
agent_data = df[df['agent_id'] == agent_id]
|
535 |
+
agent_name = agent_data['agent_name'].iloc[0] if not agent_data.empty else f"Agent {agent_id}"
|
536 |
+
|
537 |
+
# Get the valid adjusted_apr values for this agent
|
538 |
+
agent_adjusted = agent_data[agent_data['adjusted_apr'].notna()]
|
539 |
+
|
540 |
+
if agent_adjusted.empty:
|
541 |
+
logger.info(f"Agent {agent_name} (ID: {agent_id}): No adjusted_apr data available")
|
542 |
+
continue
|
543 |
+
|
544 |
+
# Get the date range for this agent's data
|
545 |
+
agent_start = agent_data['timestamp'].min()
|
546 |
+
agent_end = agent_data['timestamp'].max()
|
547 |
+
|
548 |
+
# Get the date range for adjusted_apr data
|
549 |
+
adjusted_start = agent_adjusted['timestamp'].min()
|
550 |
+
adjusted_end = agent_adjusted['timestamp'].max()
|
551 |
+
|
552 |
+
total_agent_records = len(agent_data)
|
553 |
+
agent_with_adjusted = len(agent_adjusted)
|
554 |
+
coverage_pct = (agent_with_adjusted / total_agent_records) * 100 if total_agent_records > 0 else 0
|
555 |
+
|
556 |
+
logger.info(f"Agent {agent_name} (ID: {agent_id}): {agent_with_adjusted}/{total_agent_records} records with adjusted_apr ({coverage_pct:.2f}%)")
|
557 |
+
logger.info(f"Agent {agent_name} (ID: {agent_id}): APR data from {agent_start} to {agent_end}")
|
558 |
+
logger.info(f"Agent {agent_name} (ID: {agent_id}): Adjusted APR data from {adjusted_start} to {adjusted_end}")
|
559 |
+
|
560 |
+
# Calculate if this agent had data before/after May 10th
|
561 |
+
if not before_cutoff.empty and not after_cutoff.empty:
|
562 |
+
agent_before = before_cutoff[before_cutoff['agent_id'] == agent_id]
|
563 |
+
agent_after = after_cutoff[after_cutoff['agent_id'] == agent_id]
|
564 |
+
|
565 |
+
has_before = not agent_before.empty and agent_before['adjusted_apr'].notna().any()
|
566 |
+
has_after = not agent_after.empty and agent_after['adjusted_apr'].notna().any()
|
567 |
+
|
568 |
+
if has_before and not has_after:
|
569 |
+
last_date = agent_before[agent_before['adjusted_apr'].notna()]['timestamp'].max()
|
570 |
+
logger.warning(f"Agent {agent_name} (ID: {agent_id}): Stopped providing adjusted_apr after May 10th. Last data point: {last_date}")
|
571 |
+
elif not has_before and has_after:
|
572 |
+
first_date = agent_after[agent_after['adjusted_apr'].notna()]['timestamp'].min()
|
573 |
+
logger.info(f"Agent {agent_name} (ID: {agent_id}): Started providing adjusted_apr after May 10th. First data point: {first_date}")
|
574 |
+
|
575 |
+
# Check for gaps in adjusted_apr (periods of 24+ hours without data)
|
576 |
+
if len(agent_adjusted) < 2:
|
577 |
+
continue
|
578 |
+
|
579 |
+
# Sort by timestamp
|
580 |
+
sorted_data = agent_adjusted.sort_values('timestamp')
|
581 |
+
|
582 |
+
# Calculate time differences between consecutive data points
|
583 |
+
time_diffs = sorted_data['timestamp'].diff()
|
584 |
+
|
585 |
+
# Find gaps larger than 24 hours
|
586 |
+
gaps = sorted_data[time_diffs > pd.Timedelta(hours=24)]
|
587 |
+
|
588 |
+
if not gaps.empty:
|
589 |
+
logger.info(f"Agent {agent_name} (ID: {agent_id}): Found {len(gaps)} gaps in adjusted_apr data")
|
590 |
+
|
591 |
+
# Log the gaps
|
592 |
+
for i, row in gaps.iterrows():
|
593 |
+
# Find the previous timestamp before the gap
|
594 |
+
prev_idx = sorted_data.index.get_loc(i) - 1
|
595 |
+
prev_time = sorted_data.iloc[prev_idx]['timestamp'] if prev_idx >= 0 else None
|
596 |
+
|
597 |
+
if prev_time:
|
598 |
+
gap_start = prev_time
|
599 |
+
gap_end = row['timestamp']
|
600 |
+
gap_duration = gap_end - gap_start
|
601 |
+
logger.info(f"Agent {agent_name} (ID: {agent_id}): Missing adjusted_apr from {gap_start} to {gap_end} ({gap_duration.days} days, {gap_duration.seconds//3600} hours)")
|
602 |
+
|
603 |
def generate_apr_visualizations():
|
604 |
"""Generate APR visualizations with real data only (no dummy data)"""
|
605 |
global global_df
|
|
|
934 |
avg_apr_data_with_ma['moving_avg'] = None # 3-day window for APR
|
935 |
avg_apr_data_with_ma['adjusted_moving_avg'] = None # 3-day window for adjusted APR
|
936 |
|
937 |
+
# Keep track of the last valid adjusted_moving_avg value to handle gaps
|
938 |
+
last_valid_adjusted_moving_avg = None
|
939 |
+
|
940 |
# Calculate the moving averages for each timestamp
|
941 |
for i, row in avg_apr_data_with_ma.iterrows():
|
942 |
current_time = row['timestamp']
|
|
|
954 |
logger.debug(f"APR time window {window_start} to {current_time}: {len(window_data)} points, avg={window_data['apr'].mean()}")
|
955 |
|
956 |
# Calculate adjusted APR moving average if data exists
|
957 |
+
has_adjusted_apr = 'adjusted_apr' in window_data.columns and window_data['adjusted_apr'].notna().any()
|
958 |
+
if has_adjusted_apr:
|
959 |
+
adjusted_avg = window_data['adjusted_apr'].dropna().mean()
|
960 |
+
avg_apr_data_with_ma.at[i, 'adjusted_moving_avg'] = adjusted_avg
|
961 |
+
last_valid_adjusted_moving_avg = adjusted_avg
|
962 |
+
logger.debug(f"Adjusted APR time window {window_start} to {current_time}: {len(window_data)} points, avg={adjusted_avg}")
|
963 |
+
else:
|
964 |
+
# If we don't have adjusted_apr data in this window but had some previously,
|
965 |
+
# use the last valid value to maintain continuity in the graph
|
966 |
+
if last_valid_adjusted_moving_avg is not None:
|
967 |
+
avg_apr_data_with_ma.at[i, 'adjusted_moving_avg'] = last_valid_adjusted_moving_avg
|
968 |
+
logger.debug(f"No adjusted APR data in window, using last valid value: {last_valid_adjusted_moving_avg}")
|
969 |
else:
|
970 |
# If no data points in the window, use the current value
|
971 |
avg_apr_data_with_ma.at[i, 'moving_avg'] = row['apr']
|
|
|
1072 |
|
1073 |
# Add adjusted APR moving average line if it exists
|
1074 |
if 'adjusted_moving_avg' in avg_apr_data_with_ma.columns and avg_apr_data_with_ma['adjusted_moving_avg'].notna().any():
|
1075 |
+
# Create a copy of the dataframe with forward-filled adjusted_moving_avg values
|
1076 |
+
# to ensure the line continues even when we have missing data
|
1077 |
+
filled_avg_apr_data = avg_apr_data_with_ma.copy()
|
1078 |
+
filled_avg_apr_data['adjusted_moving_avg'] = filled_avg_apr_data['adjusted_moving_avg'].fillna(method='ffill')
|
1079 |
+
|
1080 |
+
# Use the filled dataframe for the adjusted APR line
|
1081 |
+
x_values_adj = filled_avg_apr_data['timestamp'].tolist()
|
1082 |
+
y_values_adj_ma = filled_avg_apr_data['adjusted_moving_avg'].tolist()
|
1083 |
|
1084 |
# Create hover template for the adjusted APR moving average line
|
1085 |
hover_data_adj = []
|
1086 |
+
for idx, row in filled_avg_apr_data.iterrows():
|
1087 |
timestamp = row['timestamp']
|
1088 |
if pd.notna(row['adjusted_moving_avg']):
|
1089 |
hover_data_adj.append(
|
|
|
1096 |
|
1097 |
fig.add_trace(
|
1098 |
go.Scatter(
|
1099 |
+
x=x_values_adj,
|
1100 |
y=y_values_adj_ma,
|
1101 |
mode='lines', # Only lines for moving average
|
1102 |
line=dict(color='green', width=4), # Thicker solid line for adjusted APR
|
|
|
1106 |
visible=True # Visible by default
|
1107 |
)
|
1108 |
)
|
1109 |
+
logger.info(f"Added 3-day moving average Adjusted APR trace with {len(x_values_adj)} points (with forward-filling for missing values)")
|
1110 |
+
else:
|
1111 |
+
logger.warning("No adjusted APR moving average data available to plot")
|
1112 |
|
1113 |
# Removed cumulative APR as requested
|
1114 |
logger.info("Cumulative APR graph line has been removed as requested")
|
|
|
2033 |
|
2034 |
# Function to update the graph without parameters (for refresh button)
|
2035 |
def refresh_graph():
|
2036 |
+
"""Refresh APR data from the database and update the visualization"""
|
2037 |
+
try:
|
2038 |
+
# Fetch new APR data
|
2039 |
+
logger.info("Manually refreshing APR data...")
|
2040 |
+
fetch_apr_data_from_db()
|
2041 |
+
|
2042 |
+
# Verify data was fetched successfully
|
2043 |
+
if global_df is None or len(global_df) == 0:
|
2044 |
+
logger.error("Failed to fetch APR data")
|
2045 |
+
return combined_graph.value, "Error: Failed to fetch APR data. Check the logs for details."
|
2046 |
+
|
2047 |
+
# Log info about fetched data with focus on adjusted_apr
|
2048 |
+
may_10_2025 = datetime(2025, 5, 10)
|
2049 |
+
if 'timestamp' in global_df and 'adjusted_apr' in global_df:
|
2050 |
+
after_may_10 = global_df[global_df['timestamp'] >= may_10_2025]
|
2051 |
+
with_adjusted_after_may_10 = after_may_10[after_may_10['adjusted_apr'].notna()]
|
2052 |
+
|
2053 |
+
logger.info(f"Data points after May 10th, 2025: {len(after_may_10)}")
|
2054 |
+
logger.info(f"Data points with adjusted_apr after May 10th, 2025: {len(with_adjusted_after_may_10)}")
|
2055 |
+
|
2056 |
+
# Generate new visualization
|
2057 |
+
logger.info("Generating new APR visualization...")
|
2058 |
+
new_graph = update_apr_graph(apr_toggle.value, adjusted_apr_toggle.value)
|
2059 |
+
return new_graph, "APR data refreshed successfully"
|
2060 |
+
except Exception as e:
|
2061 |
+
logger.error(f"Error refreshing APR data: {e}")
|
2062 |
+
return combined_graph.value, f"Error: {str(e)}"
|
2063 |
+
|
2064 |
+
# Add a text area for status messages
|
2065 |
+
status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
|
2066 |
|
2067 |
+
# Set up the button click event for refresh
|
2068 |
+
refresh_btn.click(
|
2069 |
+
fn=refresh_graph,
|
2070 |
+
inputs=[],
|
2071 |
+
outputs=[combined_graph, status_text]
|
2072 |
+
)
|
2073 |
|
2074 |
# Set up the toggle switch events
|
2075 |
apr_toggle.change(
|
|
|
2089 |
# Launch the dashboard
|
2090 |
if __name__ == "__main__":
|
2091 |
dashboard().launch()
|
2092 |
+
|
2093 |
+
def generate_adjusted_apr_report():
|
2094 |
+
"""
|
2095 |
+
Generate a detailed report about adjusted_apr data availability and save it to a file.
|
2096 |
+
Returns the path to the generated report file.
|
2097 |
+
"""
|
2098 |
+
global global_df
|
2099 |
+
|
2100 |
+
if global_df is None or global_df.empty or 'adjusted_apr' not in global_df.columns:
|
2101 |
+
logger.warning("No adjusted_apr data available for report generation")
|
2102 |
+
return None
|
2103 |
+
|
2104 |
+
# Create a report file
|
2105 |
+
report_path = "adjusted_apr_report.txt"
|
2106 |
+
|
2107 |
+
with open(report_path, "w") as f:
|
2108 |
+
f.write("======== ADJUSTED APR DATA AVAILABILITY REPORT ========\n\n")
|
2109 |
+
|
2110 |
+
# Summary statistics
|
2111 |
+
total_records = len(global_df)
|
2112 |
+
records_with_adjusted = global_df['adjusted_apr'].notna().sum()
|
2113 |
+
pct_with_adjusted = (records_with_adjusted / total_records) * 100 if total_records > 0 else 0
|
2114 |
+
|
2115 |
+
f.write(f"Total APR records: {total_records}\n")
|
2116 |
+
f.write(f"Records with adjusted_apr: {records_with_adjusted} ({pct_with_adjusted:.2f}%)\n\n")
|
2117 |
+
|
2118 |
+
# First and last data points
|
2119 |
+
if records_with_adjusted > 0:
|
2120 |
+
has_adjusted = global_df[global_df['adjusted_apr'].notna()]
|
2121 |
+
first_date = has_adjusted['timestamp'].min()
|
2122 |
+
last_date = has_adjusted['timestamp'].max()
|
2123 |
+
f.write(f"First adjusted_apr record: {first_date}\n")
|
2124 |
+
f.write(f"Last adjusted_apr record: {last_date}\n")
|
2125 |
+
f.write(f"Date range: {(last_date - first_date).days} days\n\n")
|
2126 |
+
|
2127 |
+
# Agent statistics
|
2128 |
+
f.write("===== AGENT STATISTICS =====\n\n")
|
2129 |
+
|
2130 |
+
# Group by agent
|
2131 |
+
agent_stats = []
|
2132 |
+
|
2133 |
+
for agent_id in global_df['agent_id'].unique():
|
2134 |
+
agent_data = global_df[global_df['agent_id'] == agent_id]
|
2135 |
+
agent_name = agent_data['agent_name'].iloc[0] if not agent_data.empty else f"Agent {agent_id}"
|
2136 |
+
|
2137 |
+
total_agent_records = len(agent_data)
|
2138 |
+
agent_with_adjusted = agent_data['adjusted_apr'].notna().sum()
|
2139 |
+
coverage_pct = (agent_with_adjusted / total_agent_records) * 100 if total_agent_records > 0 else 0
|
2140 |
+
|
2141 |
+
agent_stats.append({
|
2142 |
+
'agent_id': agent_id,
|
2143 |
+
'agent_name': agent_name,
|
2144 |
+
'total_records': total_agent_records,
|
2145 |
+
'with_adjusted': agent_with_adjusted,
|
2146 |
+
'coverage_pct': coverage_pct
|
2147 |
+
})
|
2148 |
+
|
2149 |
+
# Sort by coverage percentage (descending)
|
2150 |
+
agent_stats.sort(key=lambda x: x['coverage_pct'], reverse=True)
|
2151 |
+
|
2152 |
+
# Write agent statistics
|
2153 |
+
for agent in agent_stats:
|
2154 |
+
f.write(f"Agent: {agent['agent_name']} (ID: {agent['agent_id']})\n")
|
2155 |
+
f.write(f" Records: {agent['total_records']}\n")
|
2156 |
+
f.write(f" With adjusted_apr: {agent['with_adjusted']} ({agent['coverage_pct']:.2f}%)\n")
|
2157 |
+
|
2158 |
+
# If agent has adjusted data, show date range
|
2159 |
+
agent_data = global_df[global_df['agent_id'] == agent['agent_id']]
|
2160 |
+
agent_adjusted = agent_data[agent_data['adjusted_apr'].notna()]
|
2161 |
+
|
2162 |
+
if not agent_adjusted.empty:
|
2163 |
+
first = agent_adjusted['timestamp'].min()
|
2164 |
+
last = agent_adjusted['timestamp'].max()
|
2165 |
+
f.write(f" First adjusted_apr: {first}\n")
|
2166 |
+
f.write(f" Last adjusted_apr: {last}\n")
|
2167 |
+
|
2168 |
+
f.write("\n")
|
2169 |
+
|
2170 |
+
# Check for May 10th cutoff issue
|
2171 |
+
f.write("===== MAY 10TH CUTOFF ANALYSIS =====\n\n")
|
2172 |
+
may_10_2025 = datetime(2025, 5, 10)
|
2173 |
+
|
2174 |
+
before_cutoff = global_df[global_df['timestamp'] < may_10_2025]
|
2175 |
+
after_cutoff = global_df[global_df['timestamp'] >= may_10_2025]
|
2176 |
+
|
2177 |
+
# Calculate coverage before and after
|
2178 |
+
before_total = len(before_cutoff)
|
2179 |
+
before_with_adjusted = before_cutoff['adjusted_apr'].notna().sum()
|
2180 |
+
before_pct = (before_with_adjusted / before_total) * 100 if before_total > 0 else 0
|
2181 |
+
|
2182 |
+
after_total = len(after_cutoff)
|
2183 |
+
after_with_adjusted = after_cutoff['adjusted_apr'].notna().sum()
|
2184 |
+
after_pct = (after_with_adjusted / after_total) * 100 if after_total > 0 else 0
|
2185 |
+
|
2186 |
+
f.write(f"Before May 10th, 2025:\n")
|
2187 |
+
f.write(f" Records: {before_total}\n")
|
2188 |
+
f.write(f" With adjusted_apr: {before_with_adjusted} ({before_pct:.2f}%)\n\n")
|
2189 |
+
|
2190 |
+
f.write(f"After May 10th, 2025:\n")
|
2191 |
+
f.write(f" Records: {after_total}\n")
|
2192 |
+
f.write(f" With adjusted_apr: {after_with_adjusted} ({after_pct:.2f}%)\n\n")
|
2193 |
+
|
2194 |
+
# Check for agents that had data before but not after
|
2195 |
+
if before_total > 0 and after_total > 0:
|
2196 |
+
agents_before = set(before_cutoff[before_cutoff['adjusted_apr'].notna()]['agent_id'].unique())
|
2197 |
+
agents_after = set(after_cutoff[after_cutoff['adjusted_apr'].notna()]['agent_id'].unique())
|
2198 |
+
|
2199 |
+
missing_after = agents_before - agents_after
|
2200 |
+
new_after = agents_after - agents_before
|
2201 |
+
|
2202 |
+
if missing_after:
|
2203 |
+
f.write(f"Agents with adjusted_apr before May 10th but not after: {list(missing_after)}\n")
|
2204 |
+
|
2205 |
+
# For each missing agent, show the last date with adjusted_apr
|
2206 |
+
for agent_id in missing_after:
|
2207 |
+
agent_data = before_cutoff[(before_cutoff['agent_id'] == agent_id) &
|
2208 |
+
(before_cutoff['adjusted_apr'].notna())]
|
2209 |
+
if not agent_data.empty:
|
2210 |
+
last_date = agent_data['timestamp'].max()
|
2211 |
+
agent_name = agent_data['agent_name'].iloc[0]
|
2212 |
+
f.write(f" {agent_name} (ID: {agent_id}): Last adjusted_apr on {last_date}\n")
|
2213 |
+
|
2214 |
+
if new_after:
|
2215 |
+
f.write(f"\nAgents with adjusted_apr after May 10th but not before: {list(new_after)}\n")
|
2216 |
+
|
2217 |
+
logger.info(f"Adjusted APR report generated: {report_path}")
|
2218 |
+
return report_path
|