Spaces:
Running
Running
gauravlochab
commited on
Commit
·
464321b
1
Parent(s):
7ac1cac
chore: add line for ajusted apr graph button to select the graph line
Browse files
app.py
CHANGED
@@ -156,7 +156,7 @@ def get_agent_name(agent_id: int, agents: List[Dict[str, Any]]) -> str:
|
|
156 |
return "Unknown"
|
157 |
|
158 |
def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
159 |
-
"""Extract APR value and timestamp from JSON value"""
|
160 |
try:
|
161 |
agent_id = attr.get("agent_id", "unknown")
|
162 |
logger.debug(f"Extracting APR value for agent {agent_id}")
|
@@ -164,7 +164,7 @@ def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
|
164 |
# The APR value is stored in the json_value field
|
165 |
if attr["json_value"] is None:
|
166 |
logger.debug(f"Agent {agent_id}: json_value is None")
|
167 |
-
return {"apr": None, "timestamp": None, "agent_id": agent_id, "is_dummy": False}
|
168 |
|
169 |
# If json_value is a string, parse it
|
170 |
if isinstance(attr["json_value"], str):
|
@@ -174,22 +174,23 @@ def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
|
174 |
json_data = attr["json_value"]
|
175 |
|
176 |
apr = json_data.get("apr")
|
|
|
177 |
timestamp = json_data.get("timestamp")
|
178 |
|
179 |
-
logger.debug(f"Agent {agent_id}: Raw APR value: {apr}, timestamp: {timestamp}")
|
180 |
|
181 |
# Convert timestamp to datetime if it exists
|
182 |
timestamp_dt = None
|
183 |
if timestamp:
|
184 |
timestamp_dt = datetime.fromtimestamp(timestamp)
|
185 |
|
186 |
-
result = {"apr": apr, "timestamp": timestamp_dt, "agent_id": agent_id, "is_dummy": False}
|
187 |
logger.debug(f"Agent {agent_id}: Extracted result: {result}")
|
188 |
return result
|
189 |
except (json.JSONDecodeError, KeyError, TypeError) as e:
|
190 |
logger.error(f"Error parsing JSON value: {e} for agent_id: {attr.get('agent_id')}")
|
191 |
logger.error(f"Problematic json_value: {attr.get('json_value')}")
|
192 |
-
return {"apr": None, "timestamp": None, "agent_id": attr.get('agent_id'), "is_dummy": False}
|
193 |
|
194 |
def fetch_apr_data_from_db():
|
195 |
"""
|
@@ -278,6 +279,22 @@ def fetch_apr_data_from_db():
|
|
278 |
logger.info(f"Created DataFrame with {len(global_df)} rows")
|
279 |
logger.info(f"DataFrame columns: {global_df.columns.tolist()}")
|
280 |
logger.info(f"APR statistics: min={global_df['apr'].min()}, max={global_df['apr'].max()}, mean={global_df['apr'].mean()}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
# All values are APR type (excluding zero and -100 values)
|
282 |
logger.info("All values are APR type (excluding zero and -100 values)")
|
283 |
logger.info(f"Agents count: {global_df['agent_name'].value_counts().to_dict()}")
|
@@ -622,46 +639,38 @@ def create_combined_time_series_graph(df):
|
|
622 |
avg_apr_data_with_ma = avg_apr_data.copy()
|
623 |
avg_apr_data_with_ma['moving_avg'] = None # Initialize the moving average column
|
624 |
|
625 |
-
# Define the time window for the moving average (
|
626 |
-
time_window = pd.Timedelta(
|
627 |
logger.info(f"Calculating moving average with time window of {time_window}")
|
628 |
|
629 |
-
# Calculate
|
630 |
-
avg_apr_data_with_ma['moving_avg'] = None #
|
631 |
-
avg_apr_data_with_ma['
|
632 |
|
633 |
# Calculate the moving averages for each timestamp
|
634 |
for i, row in avg_apr_data_with_ma.iterrows():
|
635 |
current_time = row['timestamp']
|
636 |
window_start = current_time - time_window
|
637 |
|
638 |
-
# Get all data points within the
|
639 |
window_data = apr_data_sorted[
|
640 |
(apr_data_sorted['timestamp'] >= window_start) &
|
641 |
(apr_data_sorted['timestamp'] <= current_time)
|
642 |
]
|
643 |
|
644 |
-
#
|
645 |
-
infinite_window_data = apr_data_sorted[
|
646 |
-
apr_data_sorted['timestamp'] <= current_time
|
647 |
-
]
|
648 |
-
|
649 |
-
# Calculate the average APR for the 2-hour time window
|
650 |
if not window_data.empty:
|
651 |
avg_apr_data_with_ma.at[i, 'moving_avg'] = window_data['apr'].mean()
|
652 |
-
logger.debug(f"
|
|
|
|
|
|
|
|
|
|
|
653 |
else:
|
654 |
# If no data points in the window, use the current value
|
655 |
avg_apr_data_with_ma.at[i, 'moving_avg'] = row['apr']
|
656 |
logger.debug(f"No data points in time window for {current_time}, using current value {row['apr']}")
|
657 |
-
|
658 |
-
# Calculate the average APR for the infinite window
|
659 |
-
if not infinite_window_data.empty:
|
660 |
-
avg_apr_data_with_ma.at[i, 'infinite_avg'] = infinite_window_data['apr'].mean()
|
661 |
-
logger.debug(f"Infinite window up to {current_time}: {len(infinite_window_data)} points, avg={infinite_window_data['apr'].mean()}")
|
662 |
-
else:
|
663 |
-
# This should never happen, but just in case
|
664 |
-
avg_apr_data_with_ma.at[i, 'infinite_avg'] = row['apr']
|
665 |
|
666 |
logger.info(f"Calculated time-based moving averages with {len(avg_apr_data_with_ma)} points")
|
667 |
|
@@ -694,7 +703,7 @@ def create_combined_time_series_graph(df):
|
|
694 |
# Determine if this agent should be visible by default
|
695 |
is_visible = agent_name in top_agents
|
696 |
|
697 |
-
# Add data points as markers
|
698 |
fig.add_trace(
|
699 |
go.Scatter(
|
700 |
x=x_values,
|
@@ -706,23 +715,46 @@ def create_combined_time_series_graph(df):
|
|
706 |
size=10,
|
707 |
line=dict(width=1, color='black')
|
708 |
),
|
709 |
-
name=f'Agent: {agent_name}',
|
710 |
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
|
711 |
visible=is_visible # Only top agents visible by default
|
712 |
)
|
713 |
)
|
714 |
-
logger.info(f"Added data points for agent {agent_name} with {len(x_values)} points (visible: {is_visible})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
715 |
|
716 |
-
# Add
|
717 |
x_values_ma = avg_apr_data_with_ma['timestamp'].tolist()
|
718 |
y_values_ma = avg_apr_data_with_ma['moving_avg'].tolist()
|
719 |
|
720 |
-
# Create hover template for the
|
721 |
-
|
722 |
for idx, row in avg_apr_data_with_ma.iterrows():
|
723 |
timestamp = row['timestamp']
|
724 |
-
|
725 |
-
f"Time: {timestamp}<br>Moving Avg APR (
|
726 |
)
|
727 |
|
728 |
fig.add_trace(
|
@@ -731,36 +763,47 @@ def create_combined_time_series_graph(df):
|
|
731 |
y=y_values_ma,
|
732 |
mode='lines', # Only lines for moving average
|
733 |
line=dict(color='red', width=2), # Thinner line
|
734 |
-
name='Moving Average APR (
|
735 |
-
hovertext=
|
736 |
-
hoverinfo='text'
|
|
|
737 |
)
|
738 |
)
|
739 |
-
logger.info(f"Added
|
740 |
-
|
741 |
-
# Add infinite window moving average as another line
|
742 |
-
y_values_infinite = avg_apr_data_with_ma['infinite_avg'].tolist()
|
743 |
|
744 |
-
#
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
750 |
)
|
|
|
751 |
|
752 |
-
|
753 |
-
|
754 |
-
x=x_values_ma,
|
755 |
-
y=y_values_infinite,
|
756 |
-
mode='lines', # Only lines for moving average
|
757 |
-
line=dict(color='green', width=4), # Thicker solid line
|
758 |
-
name='Cumulative Average APR (all data)',
|
759 |
-
hovertext=hover_data_infinite,
|
760 |
-
hoverinfo='text'
|
761 |
-
)
|
762 |
-
)
|
763 |
-
logger.info(f"Added infinite window moving average APR trace with {len(x_values_ma)} points")
|
764 |
|
765 |
# Update layout - use simple boolean values everywhere
|
766 |
# Increase the width and height for better visualization
|
@@ -1015,6 +1058,20 @@ def save_to_csv(df):
|
|
1015 |
stats_df.to_csv(stats_csv, index=False)
|
1016 |
logger.info(f"Statistics saved to {stats_csv}")
|
1017 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1018 |
return csv_file
|
1019 |
|
1020 |
def generate_statistics_from_data(df):
|
@@ -1039,6 +1096,9 @@ def generate_statistics_from_data(df):
|
|
1039 |
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
|
1040 |
real_perf = perf_data[perf_data['is_dummy'] == False]
|
1041 |
|
|
|
|
|
|
|
1042 |
stats = {
|
1043 |
'agent_id': agent_id,
|
1044 |
'agent_name': agent_name,
|
@@ -1051,6 +1111,9 @@ def generate_statistics_from_data(df):
|
|
1051 |
'avg_performance': perf_data['apr'].mean() if not perf_data.empty else None,
|
1052 |
'max_apr': apr_data['apr'].max() if not apr_data.empty else None,
|
1053 |
'min_apr': apr_data['apr'].min() if not apr_data.empty else None,
|
|
|
|
|
|
|
1054 |
'latest_timestamp': agent_data['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not agent_data.empty else None
|
1055 |
}
|
1056 |
stats_list.append(stats)
|
@@ -1059,6 +1122,9 @@ def generate_statistics_from_data(df):
|
|
1059 |
apr_only = df[df['metric_type'] == 'APR']
|
1060 |
perf_only = df[df['metric_type'] == 'Performance']
|
1061 |
|
|
|
|
|
|
|
1062 |
overall_stats = {
|
1063 |
'agent_id': 'ALL',
|
1064 |
'agent_name': 'All Agents',
|
@@ -1071,6 +1137,9 @@ def generate_statistics_from_data(df):
|
|
1071 |
'avg_performance': perf_only['apr'].mean() if not perf_only.empty else None,
|
1072 |
'max_apr': apr_only['apr'].max() if not apr_only.empty else None,
|
1073 |
'min_apr': apr_only['apr'].min() if not apr_only.empty else None,
|
|
|
|
|
|
|
1074 |
'latest_timestamp': df['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not df.empty else None
|
1075 |
}
|
1076 |
stats_list.append(overall_stats)
|
@@ -1419,11 +1488,82 @@ def dashboard():
|
|
1419 |
# Create container for plotly figure (combined graph only)
|
1420 |
combined_graph = gr.Plot(label="APR for All Agents")
|
1421 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1422 |
# Function to update the graph
|
1423 |
-
def update_apr_graph():
|
1424 |
# Generate visualization and get figure object directly
|
1425 |
try:
|
1426 |
combined_fig, _ = generate_apr_visualizations()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1427 |
return combined_fig
|
1428 |
except Exception as e:
|
1429 |
logger.exception("Error generating APR visualization")
|
@@ -1447,8 +1587,29 @@ def dashboard():
|
|
1447 |
)
|
1448 |
combined_graph.value = placeholder_fig
|
1449 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1450 |
# Set up the button click event
|
1451 |
-
refresh_btn.click(fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1452 |
|
1453 |
return demo
|
1454 |
|
|
|
156 |
return "Unknown"
|
157 |
|
158 |
def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
159 |
+
"""Extract APR value, adjusted APR value, and timestamp from JSON value"""
|
160 |
try:
|
161 |
agent_id = attr.get("agent_id", "unknown")
|
162 |
logger.debug(f"Extracting APR value for agent {agent_id}")
|
|
|
164 |
# The APR value is stored in the json_value field
|
165 |
if attr["json_value"] is None:
|
166 |
logger.debug(f"Agent {agent_id}: json_value is None")
|
167 |
+
return {"apr": None, "adjusted_apr": None, "timestamp": None, "agent_id": agent_id, "is_dummy": False}
|
168 |
|
169 |
# If json_value is a string, parse it
|
170 |
if isinstance(attr["json_value"], str):
|
|
|
174 |
json_data = attr["json_value"]
|
175 |
|
176 |
apr = json_data.get("apr")
|
177 |
+
adjusted_apr = json_data.get("adjusted_apr") # Extract adjusted_apr if present
|
178 |
timestamp = json_data.get("timestamp")
|
179 |
|
180 |
+
logger.debug(f"Agent {agent_id}: Raw APR value: {apr}, adjusted APR value: {adjusted_apr}, timestamp: {timestamp}")
|
181 |
|
182 |
# Convert timestamp to datetime if it exists
|
183 |
timestamp_dt = None
|
184 |
if timestamp:
|
185 |
timestamp_dt = datetime.fromtimestamp(timestamp)
|
186 |
|
187 |
+
result = {"apr": apr, "adjusted_apr": adjusted_apr, "timestamp": timestamp_dt, "agent_id": agent_id, "is_dummy": False}
|
188 |
logger.debug(f"Agent {agent_id}: Extracted result: {result}")
|
189 |
return result
|
190 |
except (json.JSONDecodeError, KeyError, TypeError) as e:
|
191 |
logger.error(f"Error parsing JSON value: {e} for agent_id: {attr.get('agent_id')}")
|
192 |
logger.error(f"Problematic json_value: {attr.get('json_value')}")
|
193 |
+
return {"apr": None, "adjusted_apr": None, "timestamp": None, "agent_id": attr.get('agent_id'), "is_dummy": False}
|
194 |
|
195 |
def fetch_apr_data_from_db():
|
196 |
"""
|
|
|
279 |
logger.info(f"Created DataFrame with {len(global_df)} rows")
|
280 |
logger.info(f"DataFrame columns: {global_df.columns.tolist()}")
|
281 |
logger.info(f"APR statistics: min={global_df['apr'].min()}, max={global_df['apr'].max()}, mean={global_df['apr'].mean()}")
|
282 |
+
|
283 |
+
# Log adjusted APR statistics if available
|
284 |
+
if 'adjusted_apr' in global_df.columns and global_df['adjusted_apr'].notna().any():
|
285 |
+
logger.info(f"Adjusted APR statistics: min={global_df['adjusted_apr'].min()}, max={global_df['adjusted_apr'].max()}, mean={global_df['adjusted_apr'].mean()}")
|
286 |
+
logger.info(f"Number of records with adjusted_apr: {global_df['adjusted_apr'].notna().sum()} out of {len(global_df)}")
|
287 |
+
|
288 |
+
# Log the difference between APR and adjusted APR
|
289 |
+
valid_rows = global_df[global_df['adjusted_apr'].notna()]
|
290 |
+
if not valid_rows.empty:
|
291 |
+
avg_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).mean()
|
292 |
+
max_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).max()
|
293 |
+
min_diff = (valid_rows['apr'] - valid_rows['adjusted_apr']).min()
|
294 |
+
logger.info(f"APR vs Adjusted APR difference: avg={avg_diff:.2f}, max={max_diff:.2f}, min={min_diff:.2f}")
|
295 |
+
else:
|
296 |
+
logger.info("No adjusted APR values found in the data")
|
297 |
+
|
298 |
# All values are APR type (excluding zero and -100 values)
|
299 |
logger.info("All values are APR type (excluding zero and -100 values)")
|
300 |
logger.info(f"Agents count: {global_df['agent_name'].value_counts().to_dict()}")
|
|
|
639 |
avg_apr_data_with_ma = avg_apr_data.copy()
|
640 |
avg_apr_data_with_ma['moving_avg'] = None # Initialize the moving average column
|
641 |
|
642 |
+
# Define the time window for the moving average (3 days)
|
643 |
+
time_window = pd.Timedelta(days=3)
|
644 |
logger.info(f"Calculating moving average with time window of {time_window}")
|
645 |
|
646 |
+
# Calculate moving averages: one for APR and one for adjusted APR
|
647 |
+
avg_apr_data_with_ma['moving_avg'] = None # 3-day window for APR
|
648 |
+
avg_apr_data_with_ma['adjusted_moving_avg'] = None # 3-day window for adjusted APR
|
649 |
|
650 |
# Calculate the moving averages for each timestamp
|
651 |
for i, row in avg_apr_data_with_ma.iterrows():
|
652 |
current_time = row['timestamp']
|
653 |
window_start = current_time - time_window
|
654 |
|
655 |
+
# Get all data points within the 3-day time window
|
656 |
window_data = apr_data_sorted[
|
657 |
(apr_data_sorted['timestamp'] >= window_start) &
|
658 |
(apr_data_sorted['timestamp'] <= current_time)
|
659 |
]
|
660 |
|
661 |
+
# Calculate the average APR for the 3-day time window
|
|
|
|
|
|
|
|
|
|
|
662 |
if not window_data.empty:
|
663 |
avg_apr_data_with_ma.at[i, 'moving_avg'] = window_data['apr'].mean()
|
664 |
+
logger.debug(f"APR time window {window_start} to {current_time}: {len(window_data)} points, avg={window_data['apr'].mean()}")
|
665 |
+
|
666 |
+
# Calculate adjusted APR moving average if data exists
|
667 |
+
if 'adjusted_apr' in window_data.columns and window_data['adjusted_apr'].notna().any():
|
668 |
+
avg_apr_data_with_ma.at[i, 'adjusted_moving_avg'] = window_data['adjusted_apr'].mean()
|
669 |
+
logger.debug(f"Adjusted APR time window {window_start} to {current_time}: {len(window_data)} points, avg={window_data['adjusted_apr'].mean()}")
|
670 |
else:
|
671 |
# If no data points in the window, use the current value
|
672 |
avg_apr_data_with_ma.at[i, 'moving_avg'] = row['apr']
|
673 |
logger.debug(f"No data points in time window for {current_time}, using current value {row['apr']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
674 |
|
675 |
logger.info(f"Calculated time-based moving averages with {len(avg_apr_data_with_ma)} points")
|
676 |
|
|
|
703 |
# Determine if this agent should be visible by default
|
704 |
is_visible = agent_name in top_agents
|
705 |
|
706 |
+
# Add data points as markers for APR
|
707 |
fig.add_trace(
|
708 |
go.Scatter(
|
709 |
x=x_values,
|
|
|
715 |
size=10,
|
716 |
line=dict(width=1, color='black')
|
717 |
),
|
718 |
+
name=f'Agent: {agent_name} (APR)',
|
719 |
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
|
720 |
visible=is_visible # Only top agents visible by default
|
721 |
)
|
722 |
)
|
723 |
+
logger.info(f"Added APR data points for agent {agent_name} with {len(x_values)} points (visible: {is_visible})")
|
724 |
+
|
725 |
+
# Add data points for adjusted APR if it exists
|
726 |
+
if 'adjusted_apr' in agent_data.columns and agent_data['adjusted_apr'].notna().any():
|
727 |
+
x_values_adj = agent_data['timestamp'].tolist()
|
728 |
+
y_values_adj = agent_data['adjusted_apr'].tolist()
|
729 |
+
|
730 |
+
fig.add_trace(
|
731 |
+
go.Scatter(
|
732 |
+
x=x_values_adj,
|
733 |
+
y=y_values_adj,
|
734 |
+
mode='markers', # Only markers for original data
|
735 |
+
marker=dict(
|
736 |
+
color=color_map[agent_name],
|
737 |
+
symbol='diamond', # Different symbol for adjusted APR
|
738 |
+
size=10,
|
739 |
+
line=dict(width=1, color='black')
|
740 |
+
),
|
741 |
+
name=f'Agent: {agent_name} (Adjusted APR)',
|
742 |
+
hovertemplate='Time: %{x}<br>Adjusted APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
|
743 |
+
visible=is_visible # Only top agents visible by default
|
744 |
+
)
|
745 |
+
)
|
746 |
+
logger.info(f"Added Adjusted APR data points for agent {agent_name} with {len(x_values_adj)} points (visible: {is_visible})")
|
747 |
|
748 |
+
# Add APR moving average as a smooth line
|
749 |
x_values_ma = avg_apr_data_with_ma['timestamp'].tolist()
|
750 |
y_values_ma = avg_apr_data_with_ma['moving_avg'].tolist()
|
751 |
|
752 |
+
# Create hover template for the APR moving average line
|
753 |
+
hover_data_apr = []
|
754 |
for idx, row in avg_apr_data_with_ma.iterrows():
|
755 |
timestamp = row['timestamp']
|
756 |
+
hover_data_apr.append(
|
757 |
+
f"Time: {timestamp}<br>Moving Avg APR (3d window): {row['moving_avg']:.2f}"
|
758 |
)
|
759 |
|
760 |
fig.add_trace(
|
|
|
763 |
y=y_values_ma,
|
764 |
mode='lines', # Only lines for moving average
|
765 |
line=dict(color='red', width=2), # Thinner line
|
766 |
+
name='Moving Average APR (3d window)',
|
767 |
+
hovertext=hover_data_apr,
|
768 |
+
hoverinfo='text',
|
769 |
+
visible=True # Visible by default
|
770 |
)
|
771 |
)
|
772 |
+
logger.info(f"Added 3-day moving average APR trace with {len(x_values_ma)} points")
|
|
|
|
|
|
|
773 |
|
774 |
+
# Add adjusted APR moving average line if it exists
|
775 |
+
if 'adjusted_moving_avg' in avg_apr_data_with_ma.columns and avg_apr_data_with_ma['adjusted_moving_avg'].notna().any():
|
776 |
+
y_values_adj_ma = avg_apr_data_with_ma['adjusted_moving_avg'].tolist()
|
777 |
+
|
778 |
+
# Create hover template for the adjusted APR moving average line
|
779 |
+
hover_data_adj = []
|
780 |
+
for idx, row in avg_apr_data_with_ma.iterrows():
|
781 |
+
timestamp = row['timestamp']
|
782 |
+
if pd.notna(row['adjusted_moving_avg']):
|
783 |
+
hover_data_adj.append(
|
784 |
+
f"Time: {timestamp}<br>Moving Avg Adjusted APR (3d window): {row['adjusted_moving_avg']:.2f}"
|
785 |
+
)
|
786 |
+
else:
|
787 |
+
hover_data_adj.append(
|
788 |
+
f"Time: {timestamp}<br>Moving Avg Adjusted APR (3d window): N/A"
|
789 |
+
)
|
790 |
+
|
791 |
+
fig.add_trace(
|
792 |
+
go.Scatter(
|
793 |
+
x=x_values_ma,
|
794 |
+
y=y_values_adj_ma,
|
795 |
+
mode='lines', # Only lines for moving average
|
796 |
+
line=dict(color='green', width=4), # Thicker solid line for adjusted APR
|
797 |
+
name='Moving Average Adjusted APR (3d window)',
|
798 |
+
hovertext=hover_data_adj,
|
799 |
+
hoverinfo='text',
|
800 |
+
visible=True # Visible by default
|
801 |
+
)
|
802 |
)
|
803 |
+
logger.info(f"Added 3-day moving average Adjusted APR trace with {len(x_values_ma)} points")
|
804 |
|
805 |
+
# Removed cumulative APR as requested
|
806 |
+
logger.info("Cumulative APR graph line has been removed as requested")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
807 |
|
808 |
# Update layout - use simple boolean values everywhere
|
809 |
# Increase the width and height for better visualization
|
|
|
1058 |
stats_df.to_csv(stats_csv, index=False)
|
1059 |
logger.info(f"Statistics saved to {stats_csv}")
|
1060 |
|
1061 |
+
# Log detailed statistics about adjusted APR
|
1062 |
+
if 'adjusted_apr' in df.columns and df['adjusted_apr'].notna().any():
|
1063 |
+
adjusted_stats = stats_df[stats_df['avg_adjusted_apr'].notna()]
|
1064 |
+
logger.info(f"Agents with adjusted APR data: {len(adjusted_stats)} out of {len(stats_df)}")
|
1065 |
+
|
1066 |
+
for _, row in adjusted_stats.iterrows():
|
1067 |
+
if row['agent_id'] != 'ALL': # Skip the overall stats row
|
1068 |
+
logger.info(f"Agent {row['agent_name']} adjusted APR stats: avg={row['avg_adjusted_apr']:.2f}, min={row['min_adjusted_apr']:.2f}, max={row['max_adjusted_apr']:.2f}")
|
1069 |
+
|
1070 |
+
# Log overall adjusted APR stats
|
1071 |
+
overall_row = stats_df[stats_df['agent_id'] == 'ALL']
|
1072 |
+
if not overall_row.empty and pd.notna(overall_row['avg_adjusted_apr'].iloc[0]):
|
1073 |
+
logger.info(f"Overall adjusted APR stats: avg={overall_row['avg_adjusted_apr'].iloc[0]:.2f}, min={overall_row['min_adjusted_apr'].iloc[0]:.2f}, max={overall_row['max_adjusted_apr'].iloc[0]:.2f}")
|
1074 |
+
|
1075 |
return csv_file
|
1076 |
|
1077 |
def generate_statistics_from_data(df):
|
|
|
1096 |
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
|
1097 |
real_perf = perf_data[perf_data['is_dummy'] == False]
|
1098 |
|
1099 |
+
# Check if adjusted_apr exists and has non-null values
|
1100 |
+
has_adjusted_apr = 'adjusted_apr' in apr_data.columns and apr_data['adjusted_apr'].notna().any()
|
1101 |
+
|
1102 |
stats = {
|
1103 |
'agent_id': agent_id,
|
1104 |
'agent_name': agent_name,
|
|
|
1111 |
'avg_performance': perf_data['apr'].mean() if not perf_data.empty else None,
|
1112 |
'max_apr': apr_data['apr'].max() if not apr_data.empty else None,
|
1113 |
'min_apr': apr_data['apr'].min() if not apr_data.empty else None,
|
1114 |
+
'avg_adjusted_apr': apr_data['adjusted_apr'].mean() if has_adjusted_apr else None,
|
1115 |
+
'max_adjusted_apr': apr_data['adjusted_apr'].max() if has_adjusted_apr else None,
|
1116 |
+
'min_adjusted_apr': apr_data['adjusted_apr'].min() if has_adjusted_apr else None,
|
1117 |
'latest_timestamp': agent_data['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not agent_data.empty else None
|
1118 |
}
|
1119 |
stats_list.append(stats)
|
|
|
1122 |
apr_only = df[df['metric_type'] == 'APR']
|
1123 |
perf_only = df[df['metric_type'] == 'Performance']
|
1124 |
|
1125 |
+
# Check if adjusted_apr exists and has non-null values for overall stats
|
1126 |
+
has_adjusted_apr_overall = 'adjusted_apr' in apr_only.columns and apr_only['adjusted_apr'].notna().any()
|
1127 |
+
|
1128 |
overall_stats = {
|
1129 |
'agent_id': 'ALL',
|
1130 |
'agent_name': 'All Agents',
|
|
|
1137 |
'avg_performance': perf_only['apr'].mean() if not perf_only.empty else None,
|
1138 |
'max_apr': apr_only['apr'].max() if not apr_only.empty else None,
|
1139 |
'min_apr': apr_only['apr'].min() if not apr_only.empty else None,
|
1140 |
+
'avg_adjusted_apr': apr_only['adjusted_apr'].mean() if has_adjusted_apr_overall else None,
|
1141 |
+
'max_adjusted_apr': apr_only['adjusted_apr'].max() if has_adjusted_apr_overall else None,
|
1142 |
+
'min_adjusted_apr': apr_only['adjusted_apr'].min() if has_adjusted_apr_overall else None,
|
1143 |
'latest_timestamp': df['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not df.empty else None
|
1144 |
}
|
1145 |
stats_list.append(overall_stats)
|
|
|
1488 |
# Create container for plotly figure (combined graph only)
|
1489 |
combined_graph = gr.Plot(label="APR for All Agents")
|
1490 |
|
1491 |
+
# Create compact toggle controls at the bottom of the graph
|
1492 |
+
with gr.Row(visible=True):
|
1493 |
+
gr.Markdown("##### Toggle Graph Lines", elem_id="toggle_title")
|
1494 |
+
|
1495 |
+
with gr.Row():
|
1496 |
+
with gr.Column():
|
1497 |
+
with gr.Row(elem_id="toggle_container"):
|
1498 |
+
with gr.Column(scale=1, min_width=150):
|
1499 |
+
apr_toggle = gr.Checkbox(label="APR Moving Average", value=True, elem_id="apr_toggle")
|
1500 |
+
|
1501 |
+
with gr.Column(scale=1, min_width=150):
|
1502 |
+
adjusted_apr_toggle = gr.Checkbox(label="Adjusted APR Moving Average", value=True, elem_id="adjusted_apr_toggle")
|
1503 |
+
|
1504 |
+
# Add custom CSS for styling the toggle checkboxes
|
1505 |
+
gr.HTML("""
|
1506 |
+
<style>
|
1507 |
+
/* Style for toggle checkboxes */
|
1508 |
+
#apr_toggle .gr-checkbox {
|
1509 |
+
accent-color: #e74c3c !important;
|
1510 |
+
}
|
1511 |
+
|
1512 |
+
#adjusted_apr_toggle .gr-checkbox {
|
1513 |
+
accent-color: #2ecc71 !important;
|
1514 |
+
}
|
1515 |
+
|
1516 |
+
/* Make the toggle section more compact */
|
1517 |
+
#toggle_title {
|
1518 |
+
margin-bottom: 0;
|
1519 |
+
margin-top: 10px;
|
1520 |
+
}
|
1521 |
+
|
1522 |
+
#toggle_container {
|
1523 |
+
margin-top: 5px;
|
1524 |
+
}
|
1525 |
+
|
1526 |
+
/* Style the checkbox labels */
|
1527 |
+
.gr-form.gr-box {
|
1528 |
+
border: none !important;
|
1529 |
+
background: transparent !important;
|
1530 |
+
}
|
1531 |
+
|
1532 |
+
/* Make checkboxes and labels appear on the same line */
|
1533 |
+
.gr-checkbox-container {
|
1534 |
+
display: flex !important;
|
1535 |
+
align-items: center !important;
|
1536 |
+
}
|
1537 |
+
|
1538 |
+
/* Add colored indicators */
|
1539 |
+
#apr_toggle .gr-checkbox-label::before {
|
1540 |
+
content: "●";
|
1541 |
+
color: #e74c3c;
|
1542 |
+
margin-right: 5px;
|
1543 |
+
}
|
1544 |
+
|
1545 |
+
#adjusted_apr_toggle .gr-checkbox-label::before {
|
1546 |
+
content: "●";
|
1547 |
+
color: #2ecc71;
|
1548 |
+
margin-right: 5px;
|
1549 |
+
}
|
1550 |
+
</style>
|
1551 |
+
""")
|
1552 |
+
|
1553 |
# Function to update the graph
|
1554 |
+
def update_apr_graph(show_apr_ma=True, show_adjusted_apr_ma=True):
|
1555 |
# Generate visualization and get figure object directly
|
1556 |
try:
|
1557 |
combined_fig, _ = generate_apr_visualizations()
|
1558 |
+
|
1559 |
+
# Update visibility of traces based on toggle values
|
1560 |
+
for i, trace in enumerate(combined_fig.data):
|
1561 |
+
# Check if this is a moving average trace
|
1562 |
+
if trace.name == 'Moving Average APR (3d window)':
|
1563 |
+
trace.visible = show_apr_ma
|
1564 |
+
elif trace.name == 'Moving Average Adjusted APR (3d window)':
|
1565 |
+
trace.visible = show_adjusted_apr_ma
|
1566 |
+
|
1567 |
return combined_fig
|
1568 |
except Exception as e:
|
1569 |
logger.exception("Error generating APR visualization")
|
|
|
1587 |
)
|
1588 |
combined_graph.value = placeholder_fig
|
1589 |
|
1590 |
+
# Function to update the graph based on toggle states
|
1591 |
+
def update_graph_with_toggles(apr_visible, adjusted_apr_visible):
|
1592 |
+
return update_apr_graph(apr_visible, adjusted_apr_visible)
|
1593 |
+
|
1594 |
+
# Function to update the graph without parameters (for refresh button)
|
1595 |
+
def refresh_graph():
|
1596 |
+
return update_apr_graph(apr_toggle.value, adjusted_apr_toggle.value)
|
1597 |
+
|
1598 |
# Set up the button click event
|
1599 |
+
refresh_btn.click(fn=refresh_graph, inputs=None, outputs=[combined_graph])
|
1600 |
+
|
1601 |
+
# Set up the toggle switch events
|
1602 |
+
apr_toggle.change(
|
1603 |
+
fn=update_graph_with_toggles,
|
1604 |
+
inputs=[apr_toggle, adjusted_apr_toggle],
|
1605 |
+
outputs=[combined_graph]
|
1606 |
+
)
|
1607 |
+
|
1608 |
+
adjusted_apr_toggle.change(
|
1609 |
+
fn=update_graph_with_toggles,
|
1610 |
+
inputs=[apr_toggle, adjusted_apr_toggle],
|
1611 |
+
outputs=[combined_graph]
|
1612 |
+
)
|
1613 |
|
1614 |
return demo
|
1615 |
|