Spaces:
Running
Running
gauravlochab
commited on
Commit
·
5aa3a66
1
Parent(s):
ef47052
feat: adding volumne graph
Browse files
app.py
CHANGED
@@ -42,6 +42,7 @@ logger.info(f"Running from directory: {os.getcwd()}")
|
|
42 |
# Global variables to store the data for reuse
|
43 |
global_df = None
|
44 |
global_roi_df = None
|
|
|
45 |
|
46 |
# Configuration
|
47 |
API_BASE_URL = "https://afmdb.autonolas.tech"
|
@@ -157,7 +158,7 @@ def get_agent_name(agent_id: int, agents: List[Dict[str, Any]]) -> str:
|
|
157 |
return "Unknown"
|
158 |
|
159 |
def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
160 |
-
"""Extract APR value, adjusted APR value, ROI value, and timestamp from JSON value"""
|
161 |
try:
|
162 |
agent_id = attr.get("agent_id", "unknown")
|
163 |
logger.debug(f"Extracting APR value for agent {agent_id}")
|
@@ -165,7 +166,7 @@ def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
|
165 |
# The APR value is stored in the json_value field
|
166 |
if attr["json_value"] is None:
|
167 |
logger.debug(f"Agent {agent_id}: json_value is None")
|
168 |
-
return {"apr": None, "adjusted_apr": None, "roi": None, "timestamp": None, "agent_id": agent_id, "is_dummy": False}
|
169 |
|
170 |
# If json_value is a string, parse it
|
171 |
if isinstance(attr["json_value"], str):
|
@@ -177,13 +178,20 @@ def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
|
177 |
apr = json_data.get("apr")
|
178 |
adjusted_apr = json_data.get("adjusted_apr") # Extract adjusted_apr if present
|
179 |
timestamp = json_data.get("timestamp")
|
|
|
180 |
|
181 |
# Extract ROI (f_i_ratio) from calculation_metrics if it exists
|
182 |
roi = None
|
183 |
if "calculation_metrics" in json_data and json_data["calculation_metrics"] is not None:
|
184 |
roi = json_data["calculation_metrics"].get("f_i_ratio")
|
185 |
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
# Convert timestamp to datetime if it exists
|
189 |
timestamp_dt = None
|
@@ -194,6 +202,7 @@ def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
|
194 |
"apr": apr,
|
195 |
"adjusted_apr": adjusted_apr,
|
196 |
"roi": roi,
|
|
|
197 |
"timestamp": timestamp_dt,
|
198 |
"agent_id": agent_id,
|
199 |
"is_dummy": False
|
@@ -203,7 +212,7 @@ def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
|
203 |
except (json.JSONDecodeError, KeyError, TypeError) as e:
|
204 |
logger.error(f"Error parsing JSON value: {e} for agent_id: {attr.get('agent_id')}")
|
205 |
logger.error(f"Problematic json_value: {attr.get('json_value')}")
|
206 |
-
return {"apr": None, "adjusted_apr": None, "roi": None, "timestamp": None, "agent_id": attr.get('agent_id'), "is_dummy": False}
|
207 |
|
208 |
def fetch_apr_data_from_db():
|
209 |
"""
|
@@ -688,6 +697,436 @@ def generate_apr_visualizations():
|
|
688 |
|
689 |
return combined_fig, csv_file
|
690 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
691 |
def generate_roi_visualizations():
|
692 |
"""Generate ROI visualizations with real data only (no dummy data)"""
|
693 |
global global_roi_df
|
@@ -2510,7 +2949,7 @@ def dashboard():
|
|
2510 |
with gr.Blocks() as demo:
|
2511 |
gr.Markdown("# Average Modius Agent Performance")
|
2512 |
|
2513 |
-
# Create tabs for APR and
|
2514 |
with gr.Tabs():
|
2515 |
# APR Metrics tab
|
2516 |
with gr.Tab("APR Metrics"):
|
@@ -2558,16 +2997,38 @@ def dashboard():
|
|
2558 |
|
2559 |
# Add a text area for status messages
|
2560 |
roi_status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2561 |
|
2562 |
# Add custom CSS for making the plots responsive
|
2563 |
gr.HTML("""
|
2564 |
<style>
|
2565 |
/* Make plots responsive */
|
2566 |
-
#responsive_apr_plot, #responsive_roi_plot {
|
2567 |
width: 100% !important;
|
2568 |
max-width: 100% !important;
|
2569 |
}
|
2570 |
-
#responsive_apr_plot > div, #responsive_roi_plot > div {
|
2571 |
width: 100% !important;
|
2572 |
height: auto !important;
|
2573 |
min-height: 500px !important;
|
@@ -2586,13 +3047,17 @@ def dashboard():
|
|
2586 |
accent-color: #3498db !important;
|
2587 |
}
|
2588 |
|
|
|
|
|
|
|
|
|
2589 |
/* Make the toggle section more compact */
|
2590 |
-
#apr_toggle_title, #roi_toggle_title {
|
2591 |
margin-bottom: 0;
|
2592 |
margin-top: 10px;
|
2593 |
}
|
2594 |
|
2595 |
-
#apr_toggle_container, #roi_toggle_container {
|
2596 |
margin-top: 5px;
|
2597 |
}
|
2598 |
|
@@ -2626,6 +3091,12 @@ def dashboard():
|
|
2626 |
color: #3498db;
|
2627 |
margin-right: 5px;
|
2628 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
2629 |
</style>
|
2630 |
""")
|
2631 |
|
@@ -2681,6 +3152,31 @@ def dashboard():
|
|
2681 |
)
|
2682 |
return error_fig
|
2683 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2684 |
# Initialize the APR graph on load with a placeholder
|
2685 |
apr_placeholder_fig = go.Figure()
|
2686 |
apr_placeholder_fig.add_annotation(
|
@@ -2701,6 +3197,16 @@ def dashboard():
|
|
2701 |
)
|
2702 |
combined_roi_graph.value = roi_placeholder_fig
|
2703 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2704 |
# Function to update the APR graph based on toggle states
|
2705 |
def update_apr_graph_with_toggles(apr_visible, adjusted_apr_visible):
|
2706 |
return update_apr_graph(apr_visible, adjusted_apr_visible)
|
@@ -2793,6 +3299,41 @@ def dashboard():
|
|
2793 |
inputs=[roi_toggle],
|
2794 |
outputs=[combined_roi_graph]
|
2795 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2796 |
|
2797 |
return demo
|
2798 |
|
|
|
42 |
# Global variables to store the data for reuse
|
43 |
global_df = None
|
44 |
global_roi_df = None
|
45 |
+
global_volume_df = None
|
46 |
|
47 |
# Configuration
|
48 |
API_BASE_URL = "https://afmdb.autonolas.tech"
|
|
|
158 |
return "Unknown"
|
159 |
|
160 |
def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
161 |
+
"""Extract APR value, adjusted APR value, ROI value, volume, and timestamp from JSON value"""
|
162 |
try:
|
163 |
agent_id = attr.get("agent_id", "unknown")
|
164 |
logger.debug(f"Extracting APR value for agent {agent_id}")
|
|
|
166 |
# The APR value is stored in the json_value field
|
167 |
if attr["json_value"] is None:
|
168 |
logger.debug(f"Agent {agent_id}: json_value is None")
|
169 |
+
return {"apr": None, "adjusted_apr": None, "roi": None, "volume": None, "timestamp": None, "agent_id": agent_id, "is_dummy": False}
|
170 |
|
171 |
# If json_value is a string, parse it
|
172 |
if isinstance(attr["json_value"], str):
|
|
|
178 |
apr = json_data.get("apr")
|
179 |
adjusted_apr = json_data.get("adjusted_apr") # Extract adjusted_apr if present
|
180 |
timestamp = json_data.get("timestamp")
|
181 |
+
volume = json_data.get("volume") # Extract volume if present
|
182 |
|
183 |
# Extract ROI (f_i_ratio) from calculation_metrics if it exists
|
184 |
roi = None
|
185 |
if "calculation_metrics" in json_data and json_data["calculation_metrics"] is not None:
|
186 |
roi = json_data["calculation_metrics"].get("f_i_ratio")
|
187 |
|
188 |
+
# Try to extract volume from portfolio_snapshot if it's not directly in json_data
|
189 |
+
if volume is None and "portfolio_snapshot" in json_data and json_data["portfolio_snapshot"] is not None:
|
190 |
+
portfolio = json_data["portfolio_snapshot"].get("portfolio")
|
191 |
+
if portfolio and isinstance(portfolio, dict):
|
192 |
+
volume = portfolio.get("volume")
|
193 |
+
|
194 |
+
logger.debug(f"Agent {agent_id}: Raw APR value: {apr}, adjusted APR value: {adjusted_apr}, ROI value: {roi}, volume: {volume}, timestamp: {timestamp}")
|
195 |
|
196 |
# Convert timestamp to datetime if it exists
|
197 |
timestamp_dt = None
|
|
|
202 |
"apr": apr,
|
203 |
"adjusted_apr": adjusted_apr,
|
204 |
"roi": roi,
|
205 |
+
"volume": volume,
|
206 |
"timestamp": timestamp_dt,
|
207 |
"agent_id": agent_id,
|
208 |
"is_dummy": False
|
|
|
212 |
except (json.JSONDecodeError, KeyError, TypeError) as e:
|
213 |
logger.error(f"Error parsing JSON value: {e} for agent_id: {attr.get('agent_id')}")
|
214 |
logger.error(f"Problematic json_value: {attr.get('json_value')}")
|
215 |
+
return {"apr": None, "adjusted_apr": None, "roi": None, "volume": None, "timestamp": None, "agent_id": attr.get('agent_id'), "is_dummy": False}
|
216 |
|
217 |
def fetch_apr_data_from_db():
|
218 |
"""
|
|
|
697 |
|
698 |
return combined_fig, csv_file
|
699 |
|
700 |
+
def generate_volume_visualizations():
|
701 |
+
"""Generate volume visualizations with real data only (no dummy data)"""
|
702 |
+
global global_df
|
703 |
+
global global_volume_df
|
704 |
+
|
705 |
+
# Use the existing APR data which already contains volume
|
706 |
+
if global_df is None or global_df.empty:
|
707 |
+
df, _ = fetch_apr_data_from_db()
|
708 |
+
else:
|
709 |
+
df = global_df
|
710 |
+
|
711 |
+
# Filter for records with volume data
|
712 |
+
volume_df = df[df['volume'].notna()].copy()
|
713 |
+
|
714 |
+
# Set global_volume_df for access by other functions
|
715 |
+
global_volume_df = volume_df
|
716 |
+
|
717 |
+
# If we got no data at all, return placeholder figures
|
718 |
+
if volume_df.empty:
|
719 |
+
logger.info("No volume data available. Using fallback visualization.")
|
720 |
+
# Create empty visualizations with a message using Plotly
|
721 |
+
fig = go.Figure()
|
722 |
+
fig.add_annotation(
|
723 |
+
x=0.5, y=0.5,
|
724 |
+
text="No volume data available",
|
725 |
+
font=dict(size=20),
|
726 |
+
showarrow=False
|
727 |
+
)
|
728 |
+
fig.update_layout(
|
729 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
730 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
|
731 |
+
)
|
732 |
+
|
733 |
+
# Save as static file for reference
|
734 |
+
fig.write_html("modius_volume_graph.html")
|
735 |
+
fig.write_image("modius_volume_graph.png")
|
736 |
+
|
737 |
+
csv_file = None
|
738 |
+
return fig, csv_file
|
739 |
+
|
740 |
+
# Save to CSV before creating visualizations
|
741 |
+
csv_file = save_volume_to_csv(volume_df)
|
742 |
+
|
743 |
+
# Create combined time series graph for volume
|
744 |
+
combined_fig = create_combined_volume_time_series_graph(volume_df)
|
745 |
+
|
746 |
+
return combined_fig, csv_file
|
747 |
+
|
748 |
+
def save_volume_to_csv(df):
|
749 |
+
"""Save the volume data DataFrame to a CSV file and return the file path"""
|
750 |
+
if df.empty:
|
751 |
+
logger.error("No volume data to save to CSV")
|
752 |
+
return None
|
753 |
+
|
754 |
+
# Define the CSV file path
|
755 |
+
csv_file = "modius_volume_values.csv"
|
756 |
+
|
757 |
+
# Save to CSV
|
758 |
+
df.to_csv(csv_file, index=False)
|
759 |
+
logger.info(f"Volume data saved to {csv_file}")
|
760 |
+
|
761 |
+
return csv_file
|
762 |
+
|
763 |
+
def create_combined_volume_time_series_graph(df):
|
764 |
+
"""Create a time series graph showing volume values across all agents"""
|
765 |
+
if len(df) == 0:
|
766 |
+
logger.error("No data to plot combined volume graph")
|
767 |
+
fig = go.Figure()
|
768 |
+
fig.add_annotation(
|
769 |
+
text="No volume data available",
|
770 |
+
x=0.5, y=0.5,
|
771 |
+
showarrow=False, font=dict(size=20)
|
772 |
+
)
|
773 |
+
return fig
|
774 |
+
|
775 |
+
# IMPORTANT: Force data types to ensure consistency
|
776 |
+
df['volume'] = df['volume'].astype(float) # Ensure volume is float
|
777 |
+
|
778 |
+
# Get min and max time for shapes
|
779 |
+
min_time = df['timestamp'].min()
|
780 |
+
max_time = df['timestamp'].max()
|
781 |
+
|
782 |
+
# Use the actual start date from the data
|
783 |
+
x_start_date = min_time
|
784 |
+
|
785 |
+
# CRITICAL: Log the exact dataframe we're using for plotting to help debug
|
786 |
+
logger.info(f"Volume Graph data - shape: {df.shape}, columns: {df.columns}")
|
787 |
+
logger.info(f"Volume Graph data - unique agents: {df['agent_name'].unique().tolist()}")
|
788 |
+
logger.info(f"Volume Graph data - min volume: {df['volume'].min()}, max volume: {df['volume'].max()}")
|
789 |
+
|
790 |
+
# Export full dataframe to CSV for debugging
|
791 |
+
debug_csv = "debug_volume_data.csv"
|
792 |
+
df.to_csv(debug_csv)
|
793 |
+
logger.info(f"Exported volume graph data to {debug_csv} for debugging")
|
794 |
+
|
795 |
+
# Create Plotly figure in a clean state
|
796 |
+
fig = go.Figure()
|
797 |
+
|
798 |
+
# Add background shape for volume region
|
799 |
+
fig.add_shape(
|
800 |
+
type="rect",
|
801 |
+
fillcolor="rgba(230, 243, 255, 0.3)",
|
802 |
+
line=dict(width=0),
|
803 |
+
y0=0, y1=df['volume'].max() * 1.1, # Use a reasonable upper limit for volume
|
804 |
+
x0=min_time, x1=max_time,
|
805 |
+
layer="below"
|
806 |
+
)
|
807 |
+
|
808 |
+
# Add zero line
|
809 |
+
fig.add_shape(
|
810 |
+
type="line",
|
811 |
+
line=dict(dash="solid", width=1.5, color="black"),
|
812 |
+
y0=0, y1=0,
|
813 |
+
x0=min_time, x1=max_time
|
814 |
+
)
|
815 |
+
|
816 |
+
# Group by timestamp and calculate mean volume
|
817 |
+
avg_volume_data = df.groupby('timestamp')['volume'].mean().reset_index()
|
818 |
+
|
819 |
+
# Sort by timestamp
|
820 |
+
avg_volume_data = avg_volume_data.sort_values('timestamp')
|
821 |
+
|
822 |
+
# Log the average volume data
|
823 |
+
logger.info(f"Calculated average volume data with {len(avg_volume_data)} points")
|
824 |
+
for idx, row in avg_volume_data.iterrows():
|
825 |
+
logger.info(f" Average point {idx}: timestamp={row['timestamp']}, avg_volume={row['volume']}")
|
826 |
+
|
827 |
+
# Calculate moving average based on a time window (3 days)
|
828 |
+
# Sort data by timestamp
|
829 |
+
df_sorted = df.sort_values('timestamp')
|
830 |
+
|
831 |
+
# Create a new dataframe for the moving average
|
832 |
+
avg_volume_data_with_ma = avg_volume_data.copy()
|
833 |
+
avg_volume_data_with_ma['moving_avg'] = None # Initialize the moving average column
|
834 |
+
|
835 |
+
# Define the time window for the moving average (3 days)
|
836 |
+
time_window = pd.Timedelta(days=3)
|
837 |
+
logger.info(f"Calculating moving average with time window of {time_window}")
|
838 |
+
|
839 |
+
# Calculate the moving averages for each timestamp
|
840 |
+
for i, row in avg_volume_data_with_ma.iterrows():
|
841 |
+
current_time = row['timestamp']
|
842 |
+
window_start = current_time - time_window
|
843 |
+
|
844 |
+
# Get all data points within the 3-day time window
|
845 |
+
window_data = df_sorted[
|
846 |
+
(df_sorted['timestamp'] >= window_start) &
|
847 |
+
(df_sorted['timestamp'] <= current_time)
|
848 |
+
]
|
849 |
+
|
850 |
+
# Calculate the average volume for the 3-day time window
|
851 |
+
if not window_data.empty:
|
852 |
+
avg_volume_data_with_ma.at[i, 'moving_avg'] = window_data['volume'].mean()
|
853 |
+
logger.debug(f"Volume time window {window_start} to {current_time}: {len(window_data)} points, avg={window_data['volume'].mean()}")
|
854 |
+
else:
|
855 |
+
# If no data points in the window, use the current value
|
856 |
+
avg_volume_data_with_ma.at[i, 'moving_avg'] = row['volume']
|
857 |
+
logger.debug(f"No data points in time window for {current_time}, using current value {row['volume']}")
|
858 |
+
|
859 |
+
logger.info(f"Calculated time-based moving averages with {len(avg_volume_data_with_ma)} points")
|
860 |
+
|
861 |
+
# Find the last date where we have valid moving average data
|
862 |
+
last_valid_ma_date = avg_volume_data_with_ma[avg_volume_data_with_ma['moving_avg'].notna()]['timestamp'].max() if not avg_volume_data_with_ma['moving_avg'].dropna().empty else None
|
863 |
+
|
864 |
+
# If we don't have any valid moving average data, use the max time from the original data
|
865 |
+
last_valid_date = last_valid_ma_date if last_valid_ma_date is not None else df['timestamp'].max()
|
866 |
+
|
867 |
+
logger.info(f"Last valid moving average date: {last_valid_ma_date}")
|
868 |
+
logger.info(f"Using last valid date for graph: {last_valid_date}")
|
869 |
+
|
870 |
+
# Plot individual agent data points with agent names in hover, but limit display for scalability
|
871 |
+
if not df.empty:
|
872 |
+
# Group by agent to use different colors for each agent
|
873 |
+
unique_agents = df['agent_name'].unique()
|
874 |
+
colors = px.colors.qualitative.Plotly[:len(unique_agents)]
|
875 |
+
|
876 |
+
# Create a color map for agents
|
877 |
+
color_map = {agent: colors[i % len(colors)] for i, agent in enumerate(unique_agents)}
|
878 |
+
|
879 |
+
# Calculate the total number of data points per agent to determine which are most active
|
880 |
+
agent_counts = df['agent_name'].value_counts()
|
881 |
+
|
882 |
+
# Determine how many agents to show individually (limit to top 5 most active)
|
883 |
+
MAX_VISIBLE_AGENTS = 5
|
884 |
+
top_agents = agent_counts.nlargest(min(MAX_VISIBLE_AGENTS, len(agent_counts))).index.tolist()
|
885 |
+
|
886 |
+
logger.info(f"Showing {len(top_agents)} agents by default out of {len(unique_agents)} total agents")
|
887 |
+
|
888 |
+
# Add data points for each agent, but only make top agents visible by default
|
889 |
+
for agent_name in unique_agents:
|
890 |
+
agent_data = df[df['agent_name'] == agent_name]
|
891 |
+
|
892 |
+
# Explicitly convert to Python lists
|
893 |
+
x_values = agent_data['timestamp'].tolist()
|
894 |
+
y_values = agent_data['volume'].tolist()
|
895 |
+
|
896 |
+
# Change default visibility to False to hide all agent data points
|
897 |
+
is_visible = False
|
898 |
+
|
899 |
+
# Add data points as markers for volume
|
900 |
+
fig.add_trace(
|
901 |
+
go.Scatter(
|
902 |
+
x=x_values,
|
903 |
+
y=y_values,
|
904 |
+
mode='markers', # Only markers for original data
|
905 |
+
marker=dict(
|
906 |
+
color=color_map[agent_name],
|
907 |
+
symbol='circle',
|
908 |
+
size=10,
|
909 |
+
line=dict(width=1, color='black')
|
910 |
+
),
|
911 |
+
name=f'Agent: {agent_name} (Volume)',
|
912 |
+
hovertemplate='Time: %{x}<br>Volume: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>',
|
913 |
+
visible=is_visible # All agents hidden by default
|
914 |
+
)
|
915 |
+
)
|
916 |
+
logger.info(f"Added volume data points for agent {agent_name} with {len(x_values)} points (visible: {is_visible})")
|
917 |
+
|
918 |
+
# Add volume moving average as a smooth line
|
919 |
+
x_values_ma = avg_volume_data_with_ma['timestamp'].tolist()
|
920 |
+
y_values_ma = avg_volume_data_with_ma['moving_avg'].tolist()
|
921 |
+
|
922 |
+
# Create hover template for the volume moving average line
|
923 |
+
hover_data_volume = []
|
924 |
+
for idx, row in avg_volume_data_with_ma.iterrows():
|
925 |
+
timestamp = row['timestamp']
|
926 |
+
# Format timestamp to show only up to seconds (not milliseconds)
|
927 |
+
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
928 |
+
|
929 |
+
# Calculate number of active agents in the last 24 hours
|
930 |
+
time_24h_ago = timestamp - pd.Timedelta(hours=24)
|
931 |
+
active_agents = len(df[(df['timestamp'] >= time_24h_ago) &
|
932 |
+
(df['timestamp'] <= timestamp)]['agent_id'].unique())
|
933 |
+
|
934 |
+
hover_data_volume.append(
|
935 |
+
f"Time: {formatted_timestamp}<br>Avg Volume (3d window): {row['moving_avg']:.2f}<br>Active agents (24h): {active_agents}"
|
936 |
+
)
|
937 |
+
|
938 |
+
fig.add_trace(
|
939 |
+
go.Scatter(
|
940 |
+
x=x_values_ma,
|
941 |
+
y=y_values_ma,
|
942 |
+
mode='lines', # Only lines for moving average
|
943 |
+
line=dict(color='purple', width=2), # Purple line for volume
|
944 |
+
name='Average Volume (3d window)',
|
945 |
+
hovertext=hover_data_volume,
|
946 |
+
hoverinfo='text',
|
947 |
+
visible=True # Visible by default
|
948 |
+
)
|
949 |
+
)
|
950 |
+
logger.info(f"Added 3-day moving average volume trace with {len(x_values_ma)} points")
|
951 |
+
|
952 |
+
# Update layout
|
953 |
+
fig.update_layout(
|
954 |
+
title=dict(
|
955 |
+
text="Modius Agents Volume",
|
956 |
+
font=dict(
|
957 |
+
family="Arial, sans-serif",
|
958 |
+
size=22,
|
959 |
+
color="black",
|
960 |
+
weight="bold"
|
961 |
+
)
|
962 |
+
),
|
963 |
+
xaxis_title=None, # Remove x-axis title to use annotation instead
|
964 |
+
yaxis_title=None, # Remove the y-axis title as we'll use annotations instead
|
965 |
+
template="plotly_white",
|
966 |
+
height=600, # Reduced height for better fit on smaller screens
|
967 |
+
autosize=True, # Enable auto-sizing for responsiveness
|
968 |
+
legend=dict(
|
969 |
+
orientation="h",
|
970 |
+
yanchor="bottom",
|
971 |
+
y=1.02,
|
972 |
+
xanchor="right",
|
973 |
+
x=1,
|
974 |
+
groupclick="toggleitem"
|
975 |
+
),
|
976 |
+
margin=dict(r=30, l=120, t=40, b=50), # Increased bottom margin for x-axis title
|
977 |
+
hovermode="closest"
|
978 |
+
)
|
979 |
+
|
980 |
+
# Add single annotation for y-axis
|
981 |
+
fig.add_annotation(
|
982 |
+
x=-0.08, # Position further from the y-axis to avoid overlapping with tick labels
|
983 |
+
y=df['volume'].max() / 2, # Center of the y-axis
|
984 |
+
xref="paper",
|
985 |
+
yref="y",
|
986 |
+
text="Volume",
|
987 |
+
showarrow=False,
|
988 |
+
font=dict(size=16, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
|
989 |
+
textangle=-90, # Rotate text to be vertical
|
990 |
+
align="center"
|
991 |
+
)
|
992 |
+
|
993 |
+
# Update layout for legend
|
994 |
+
fig.update_layout(
|
995 |
+
legend=dict(
|
996 |
+
orientation="h",
|
997 |
+
yanchor="bottom",
|
998 |
+
y=1.02,
|
999 |
+
xanchor="right",
|
1000 |
+
x=1,
|
1001 |
+
groupclick="toggleitem",
|
1002 |
+
font=dict(
|
1003 |
+
family="Arial, sans-serif",
|
1004 |
+
size=14, # Adjusted font size
|
1005 |
+
color="black",
|
1006 |
+
weight="bold"
|
1007 |
+
)
|
1008 |
+
)
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
# Update y-axis with autoscaling for volume
|
1012 |
+
fig.update_yaxes(
|
1013 |
+
showgrid=True,
|
1014 |
+
gridwidth=1,
|
1015 |
+
gridcolor='rgba(0,0,0,0.1)',
|
1016 |
+
autorange=True, # Enable autoscaling for volume
|
1017 |
+
tickformat=".2f", # Format tick labels with 2 decimal places
|
1018 |
+
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
|
1019 |
+
title=None # Remove the built-in axis title since we're using annotations
|
1020 |
+
)
|
1021 |
+
|
1022 |
+
# Update x-axis with better formatting and fixed range
|
1023 |
+
fig.update_xaxes(
|
1024 |
+
showgrid=True,
|
1025 |
+
gridwidth=1,
|
1026 |
+
gridcolor='rgba(0,0,0,0.1)',
|
1027 |
+
# Set fixed range with start date and ending at the last valid date
|
1028 |
+
autorange=False, # Disable autoscaling
|
1029 |
+
range=[x_start_date, last_valid_date], # Set fixed range from start date to last valid date
|
1030 |
+
tickformat="%b %d", # Simplified date format without time
|
1031 |
+
tickangle=-30, # Angle the labels for better readability
|
1032 |
+
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"), # Adjusted font size
|
1033 |
+
title=None # Remove built-in title to use annotation instead
|
1034 |
+
)
|
1035 |
+
|
1036 |
+
try:
|
1037 |
+
# Save the figure
|
1038 |
+
graph_file = "modius_volume_graph.html"
|
1039 |
+
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
|
1040 |
+
|
1041 |
+
# Also save as image for compatibility
|
1042 |
+
img_file = "modius_volume_graph.png"
|
1043 |
+
try:
|
1044 |
+
fig.write_image(img_file)
|
1045 |
+
logger.info(f"Volume graph saved to {graph_file} and {img_file}")
|
1046 |
+
except Exception as e:
|
1047 |
+
logger.error(f"Error saving volume image: {e}")
|
1048 |
+
logger.info(f"Volume graph saved to {graph_file} only")
|
1049 |
+
|
1050 |
+
# Return the figure object for direct use in Gradio
|
1051 |
+
return fig
|
1052 |
+
except Exception as e:
|
1053 |
+
# If the complex graph approach fails, create a simpler one
|
1054 |
+
logger.error(f"Error creating advanced volume graph: {e}")
|
1055 |
+
logger.info("Falling back to simpler volume graph")
|
1056 |
+
|
1057 |
+
# Create a simpler graph as fallback
|
1058 |
+
simple_fig = go.Figure()
|
1059 |
+
|
1060 |
+
# Add zero line
|
1061 |
+
simple_fig.add_shape(
|
1062 |
+
type="line",
|
1063 |
+
line=dict(dash="solid", width=1.5, color="black"),
|
1064 |
+
y0=0, y1=0,
|
1065 |
+
x0=min_time, x1=max_time
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
# Simply plot the average volume data with moving average
|
1069 |
+
if not avg_volume_data.empty:
|
1070 |
+
# Add moving average as a line
|
1071 |
+
simple_fig.add_trace(
|
1072 |
+
go.Scatter(
|
1073 |
+
x=avg_volume_data_with_ma['timestamp'],
|
1074 |
+
y=avg_volume_data_with_ma['moving_avg'],
|
1075 |
+
mode='lines',
|
1076 |
+
name='Average Volume (3d window)',
|
1077 |
+
line=dict(width=2, color='purple') # Purple line for volume
|
1078 |
+
)
|
1079 |
+
)
|
1080 |
+
|
1081 |
+
# Simplified layout with adjusted y-axis range
|
1082 |
+
simple_fig.update_layout(
|
1083 |
+
title=dict(
|
1084 |
+
text="Modius Agents Volume",
|
1085 |
+
font=dict(
|
1086 |
+
family="Arial, sans-serif",
|
1087 |
+
size=22,
|
1088 |
+
color="black",
|
1089 |
+
weight="bold"
|
1090 |
+
)
|
1091 |
+
),
|
1092 |
+
xaxis_title=None,
|
1093 |
+
yaxis_title=None,
|
1094 |
+
template="plotly_white",
|
1095 |
+
height=600,
|
1096 |
+
autosize=True,
|
1097 |
+
margin=dict(r=30, l=120, t=40, b=50)
|
1098 |
+
)
|
1099 |
+
|
1100 |
+
# Update y-axis with autoscaling for volume
|
1101 |
+
simple_fig.update_yaxes(
|
1102 |
+
showgrid=True,
|
1103 |
+
gridwidth=1,
|
1104 |
+
gridcolor='rgba(0,0,0,0.1)',
|
1105 |
+
autorange=True, # Enable autoscaling for volume
|
1106 |
+
tickformat=".2f",
|
1107 |
+
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold"),
|
1108 |
+
title=None # Remove the built-in axis title since we're using annotations
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
# Update x-axis with better formatting and fixed range
|
1112 |
+
simple_fig.update_xaxes(
|
1113 |
+
showgrid=True,
|
1114 |
+
gridwidth=1,
|
1115 |
+
gridcolor='rgba(0,0,0,0.1)',
|
1116 |
+
autorange=False,
|
1117 |
+
range=[x_start_date, max_time],
|
1118 |
+
tickformat="%b %d",
|
1119 |
+
tickangle=-30,
|
1120 |
+
tickfont=dict(size=14, family="Arial, sans-serif", color="black", weight="bold")
|
1121 |
+
)
|
1122 |
+
|
1123 |
+
# Save the figure
|
1124 |
+
graph_file = "modius_volume_graph.html"
|
1125 |
+
simple_fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
|
1126 |
+
|
1127 |
+
# Return the simple figure
|
1128 |
+
return simple_fig
|
1129 |
+
|
1130 |
def generate_roi_visualizations():
|
1131 |
"""Generate ROI visualizations with real data only (no dummy data)"""
|
1132 |
global global_roi_df
|
|
|
2949 |
with gr.Blocks() as demo:
|
2950 |
gr.Markdown("# Average Modius Agent Performance")
|
2951 |
|
2952 |
+
# Create tabs for APR, ROI, and Volume metrics
|
2953 |
with gr.Tabs():
|
2954 |
# APR Metrics tab
|
2955 |
with gr.Tab("APR Metrics"):
|
|
|
2997 |
|
2998 |
# Add a text area for status messages
|
2999 |
roi_status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
|
3000 |
+
|
3001 |
+
# Volume Metrics tab
|
3002 |
+
with gr.Tab("Volume Metrics"):
|
3003 |
+
with gr.Column():
|
3004 |
+
refresh_volume_btn = gr.Button("Refresh Volume Data")
|
3005 |
+
|
3006 |
+
# Create container for plotly figure with responsive sizing
|
3007 |
+
with gr.Column():
|
3008 |
+
combined_volume_graph = gr.Plot(label="Volume for All Agents", elem_id="responsive_volume_plot")
|
3009 |
+
|
3010 |
+
# Create compact toggle controls at the bottom of the graph
|
3011 |
+
with gr.Row(visible=True):
|
3012 |
+
gr.Markdown("##### Toggle Graph Lines", elem_id="volume_toggle_title")
|
3013 |
+
|
3014 |
+
with gr.Row():
|
3015 |
+
with gr.Column():
|
3016 |
+
with gr.Row(elem_id="volume_toggle_container"):
|
3017 |
+
with gr.Column(scale=1, min_width=150):
|
3018 |
+
volume_toggle = gr.Checkbox(label="Volume Average", value=True, elem_id="volume_toggle")
|
3019 |
+
|
3020 |
+
# Add a text area for status messages
|
3021 |
+
volume_status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
|
3022 |
|
3023 |
# Add custom CSS for making the plots responsive
|
3024 |
gr.HTML("""
|
3025 |
<style>
|
3026 |
/* Make plots responsive */
|
3027 |
+
#responsive_apr_plot, #responsive_roi_plot, #responsive_volume_plot {
|
3028 |
width: 100% !important;
|
3029 |
max-width: 100% !important;
|
3030 |
}
|
3031 |
+
#responsive_apr_plot > div, #responsive_roi_plot > div, #responsive_volume_plot > div {
|
3032 |
width: 100% !important;
|
3033 |
height: auto !important;
|
3034 |
min-height: 500px !important;
|
|
|
3047 |
accent-color: #3498db !important;
|
3048 |
}
|
3049 |
|
3050 |
+
#volume_toggle .gr-checkbox {
|
3051 |
+
accent-color: #9b59b6 !important;
|
3052 |
+
}
|
3053 |
+
|
3054 |
/* Make the toggle section more compact */
|
3055 |
+
#apr_toggle_title, #roi_toggle_title, #volume_toggle_title {
|
3056 |
margin-bottom: 0;
|
3057 |
margin-top: 10px;
|
3058 |
}
|
3059 |
|
3060 |
+
#apr_toggle_container, #roi_toggle_container, #volume_toggle_container {
|
3061 |
margin-top: 5px;
|
3062 |
}
|
3063 |
|
|
|
3091 |
color: #3498db;
|
3092 |
margin-right: 5px;
|
3093 |
}
|
3094 |
+
|
3095 |
+
#volume_toggle .gr-checkbox-label::before {
|
3096 |
+
content: "●";
|
3097 |
+
color: #9b59b6;
|
3098 |
+
margin-right: 5px;
|
3099 |
+
}
|
3100 |
</style>
|
3101 |
""")
|
3102 |
|
|
|
3152 |
)
|
3153 |
return error_fig
|
3154 |
|
3155 |
+
# Function to update the Volume graph
|
3156 |
+
def update_volume_graph(show_volume_ma=True):
|
3157 |
+
# Generate visualization and get figure object directly
|
3158 |
+
try:
|
3159 |
+
combined_fig, _ = generate_volume_visualizations()
|
3160 |
+
|
3161 |
+
# Update visibility of traces based on toggle values
|
3162 |
+
for i, trace in enumerate(combined_fig.data):
|
3163 |
+
# Check if this is a moving average trace
|
3164 |
+
if trace.name == 'Average Volume (3d window)':
|
3165 |
+
trace.visible = show_volume_ma
|
3166 |
+
|
3167 |
+
return combined_fig
|
3168 |
+
except Exception as e:
|
3169 |
+
logger.exception("Error generating Volume visualization")
|
3170 |
+
# Create error figure
|
3171 |
+
error_fig = go.Figure()
|
3172 |
+
error_fig.add_annotation(
|
3173 |
+
text=f"Error: {str(e)}",
|
3174 |
+
x=0.5, y=0.5,
|
3175 |
+
showarrow=False,
|
3176 |
+
font=dict(size=15, color="red")
|
3177 |
+
)
|
3178 |
+
return error_fig
|
3179 |
+
|
3180 |
# Initialize the APR graph on load with a placeholder
|
3181 |
apr_placeholder_fig = go.Figure()
|
3182 |
apr_placeholder_fig.add_annotation(
|
|
|
3197 |
)
|
3198 |
combined_roi_graph.value = roi_placeholder_fig
|
3199 |
|
3200 |
+
# Initialize the Volume graph on load with a placeholder
|
3201 |
+
volume_placeholder_fig = go.Figure()
|
3202 |
+
volume_placeholder_fig.add_annotation(
|
3203 |
+
text="Click 'Refresh Volume Data' to load Volume graph",
|
3204 |
+
x=0.5, y=0.5,
|
3205 |
+
showarrow=False,
|
3206 |
+
font=dict(size=15)
|
3207 |
+
)
|
3208 |
+
combined_volume_graph.value = volume_placeholder_fig
|
3209 |
+
|
3210 |
# Function to update the APR graph based on toggle states
|
3211 |
def update_apr_graph_with_toggles(apr_visible, adjusted_apr_visible):
|
3212 |
return update_apr_graph(apr_visible, adjusted_apr_visible)
|
|
|
3299 |
inputs=[roi_toggle],
|
3300 |
outputs=[combined_roi_graph]
|
3301 |
)
|
3302 |
+
|
3303 |
+
# Function to refresh volume data
|
3304 |
+
def refresh_volume_data():
|
3305 |
+
"""Refresh volume data from the database and update the visualization"""
|
3306 |
+
try:
|
3307 |
+
# Fetch new volume data
|
3308 |
+
logger.info("Manually refreshing volume data...")
|
3309 |
+
fetch_apr_data_from_db() # This also fetches volume data
|
3310 |
+
|
3311 |
+
# Verify data was fetched successfully
|
3312 |
+
if global_df is None or len(global_df) == 0:
|
3313 |
+
logger.error("Failed to fetch volume data")
|
3314 |
+
return combined_volume_graph.value, "Error: Failed to fetch volume data. Check the logs for details."
|
3315 |
+
|
3316 |
+
# Generate new visualization
|
3317 |
+
logger.info("Generating new volume visualization...")
|
3318 |
+
new_graph = update_volume_graph(volume_toggle.value)
|
3319 |
+
return new_graph, "Volume data refreshed successfully"
|
3320 |
+
except Exception as e:
|
3321 |
+
logger.error(f"Error refreshing volume data: {e}")
|
3322 |
+
return combined_volume_graph.value, f"Error: {str(e)}"
|
3323 |
+
|
3324 |
+
# Set up the button click event for volume refresh
|
3325 |
+
refresh_volume_btn.click(
|
3326 |
+
fn=refresh_volume_data,
|
3327 |
+
inputs=[],
|
3328 |
+
outputs=[combined_volume_graph, volume_status_text]
|
3329 |
+
)
|
3330 |
+
|
3331 |
+
# Set up the toggle switch events for volume
|
3332 |
+
volume_toggle.change(
|
3333 |
+
fn=update_volume_graph,
|
3334 |
+
inputs=[volume_toggle],
|
3335 |
+
outputs=[combined_volume_graph]
|
3336 |
+
)
|
3337 |
|
3338 |
return demo
|
3339 |
|