Spaces:
Running
Running
gauravlochab
commited on
Commit
·
bffbc7a
1
Parent(s):
5b3ed4c
chore: add APR graph
Browse files- app.py +112 -108
- apr_visualization.py +588 -0
app.py
CHANGED
@@ -5,9 +5,41 @@ import plotly.graph_objects as go
|
|
5 |
import plotly.express as px
|
6 |
from datetime import datetime, timedelta
|
7 |
import json
|
8 |
-
|
|
|
9 |
import os
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Load environment variables from .env file
|
12 |
# RPC URLs
|
13 |
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL')
|
@@ -41,103 +73,29 @@ for chain_name, web3_instance in web3_instances.items():
|
|
41 |
raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.")
|
42 |
else:
|
43 |
print(f"Successfully connected to the {chain_name.capitalize()} network.")
|
|
|
44 |
|
|
|
45 |
def get_transfers(integrator: str, wallet: str) -> str:
|
46 |
-
|
47 |
-
|
48 |
-
response = requests.get(url, headers=headers)
|
49 |
-
return response.json()
|
50 |
|
51 |
def fetch_and_aggregate_transactions():
|
52 |
-
|
53 |
-
|
54 |
-
seen_agents = set()
|
55 |
-
|
56 |
-
for chain_name, service_registry in service_registries.items():
|
57 |
-
web3 = web3_instances[chain_name]
|
58 |
-
total_services = service_registry.functions.totalSupply().call()
|
59 |
-
|
60 |
-
for service_id in range(1, total_services + 1):
|
61 |
-
service = service_registry.functions.getService(service_id).call()
|
62 |
-
agent_ids = service[-1]
|
63 |
-
if 40 in agent_ids or 25 in agent_ids:
|
64 |
-
agent_instance_data = service_registry.functions.getAgentInstances(service_id).call()
|
65 |
-
agent_addresses = agent_instance_data[1]
|
66 |
-
if agent_addresses:
|
67 |
-
agent_address = agent_addresses[0]
|
68 |
-
response_transfers = get_transfers("valory", agent_address)
|
69 |
-
transfers = response_transfers.get("transfers", [])
|
70 |
-
|
71 |
-
if isinstance(transfers, list):
|
72 |
-
aggregated_transactions.extend(transfers)
|
73 |
-
|
74 |
-
# Track the daily number of agents
|
75 |
-
current_date = ""
|
76 |
-
creation_event = service_registry.events.CreateService.create_filter(from_block=0, argument_filters={'serviceId': service_id}).get_all_entries()
|
77 |
-
if creation_event:
|
78 |
-
block_number = creation_event[0]['blockNumber']
|
79 |
-
block = web3.eth.get_block(block_number)
|
80 |
-
creation_timestamp = datetime.fromtimestamp(block['timestamp'])
|
81 |
-
date_str = creation_timestamp.strftime('%Y-%m-%d')
|
82 |
-
current_date = date_str
|
83 |
-
|
84 |
-
# Ensure each agent is only counted once based on first registered date
|
85 |
-
if agent_address not in seen_agents:
|
86 |
-
seen_agents.add(agent_address)
|
87 |
-
if date_str not in daily_agent_counts:
|
88 |
-
daily_agent_counts[date_str] = set()
|
89 |
-
daily_agent_counts[date_str].add(agent_address)
|
90 |
-
daily_agent_counts = {date: len(agents) for date, agents in daily_agent_counts.items()}
|
91 |
-
return aggregated_transactions, daily_agent_counts
|
92 |
|
93 |
# Function to parse the transaction data and prepare it for visualization
|
94 |
def process_transactions_and_agents(data):
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
for tx in transactions:
|
100 |
-
# Normalize amounts
|
101 |
-
sending_amount = float(tx["sending"]["amount"]) / (10 ** tx["sending"]["token"]["decimals"])
|
102 |
-
receiving_amount = float(tx["receiving"]["amount"]) / (10 ** tx["receiving"]["token"]["decimals"])
|
103 |
-
|
104 |
-
# Convert timestamps to datetime objects
|
105 |
-
sending_timestamp = datetime.utcfromtimestamp(tx["sending"]["timestamp"])
|
106 |
-
receiving_timestamp = datetime.utcfromtimestamp(tx["receiving"]["timestamp"])
|
107 |
-
|
108 |
-
# Prepare row data
|
109 |
-
rows.append({
|
110 |
-
"transactionId": tx["transactionId"],
|
111 |
-
"from_address": tx["fromAddress"],
|
112 |
-
"to_address": tx["toAddress"],
|
113 |
-
"sending_chain": tx["sending"]["chainId"],
|
114 |
-
"receiving_chain": tx["receiving"]["chainId"],
|
115 |
-
"sending_token_symbol": tx["sending"]["token"]["symbol"],
|
116 |
-
"receiving_token_symbol": tx["receiving"]["token"]["symbol"],
|
117 |
-
"sending_amount": sending_amount,
|
118 |
-
"receiving_amount": receiving_amount,
|
119 |
-
"sending_amount_usd": float(tx["sending"]["amountUSD"]),
|
120 |
-
"receiving_amount_usd": float(tx["receiving"]["amountUSD"]),
|
121 |
-
"sending_gas_used": int(tx["sending"]["gasUsed"]),
|
122 |
-
"receiving_gas_used": int(tx["receiving"]["gasUsed"]),
|
123 |
-
"sending_timestamp": sending_timestamp,
|
124 |
-
"receiving_timestamp": receiving_timestamp,
|
125 |
-
"date": sending_timestamp.date(), # Group by day
|
126 |
-
"week": sending_timestamp.strftime('%Y-%m-%d') # Group by week
|
127 |
-
})
|
128 |
-
|
129 |
-
df_transactions = pd.DataFrame(rows)
|
130 |
-
df_transactions = df_transactions.drop_duplicates()
|
131 |
-
df_agents = pd.DataFrame(list(daily_agent_counts.items()), columns=['date', 'agent_count'])
|
132 |
-
df_agents['date'] = pd.to_datetime(df_agents['date'])
|
133 |
-
df_agents['week'] = df_agents['date'].dt.to_period('W').apply(lambda r: r.start_time)
|
134 |
-
|
135 |
-
df_agents_weekly = df_agents[['week', 'agent_count']].groupby('week').sum().reset_index()
|
136 |
-
|
137 |
return df_transactions, df_agents, df_agents_weekly
|
138 |
|
139 |
# Function to create visualizations based on the metrics
|
140 |
def create_visualizations():
|
|
|
|
|
141 |
transactions_data = fetch_and_aggregate_transactions()
|
142 |
df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data)
|
143 |
|
@@ -356,31 +314,77 @@ def create_visualizations():
|
|
356 |
)
|
357 |
|
358 |
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
|
360 |
# Gradio interface
|
361 |
def dashboard():
|
362 |
with gr.Blocks() as demo:
|
363 |
-
gr.Markdown("# Valory
|
364 |
-
with gr.Tab("Chain Daily activity"):
|
365 |
-
fig_tx_chain = create_transcation_visualizations()
|
366 |
-
gr.Plot(fig_tx_chain)
|
367 |
-
|
368 |
-
fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl = create_visualizations()
|
369 |
-
with gr.Tab("Swaps Daily"):
|
370 |
-
gr.Plot(fig_swaps_chain)
|
371 |
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
return demo
|
386 |
|
|
|
5 |
import plotly.express as px
|
6 |
from datetime import datetime, timedelta
|
7 |
import json
|
8 |
+
# Commenting out blockchain-related imports that cause loading issues
|
9 |
+
# from web3 import Web3
|
10 |
import os
|
11 |
+
import numpy as np
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import matplotlib.dates as mdates
|
14 |
+
import random
|
15 |
+
# Comment out the import for now and replace with dummy functions
|
16 |
+
# from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations
|
17 |
+
# Import APR visualization functions from the new module
|
18 |
+
from apr_visualization import generate_apr_visualizations
|
19 |
+
|
20 |
+
# Create dummy functions for the commented out imports
|
21 |
+
def create_transcation_visualizations():
|
22 |
+
"""Dummy implementation that returns a placeholder graph"""
|
23 |
+
fig = go.Figure()
|
24 |
+
fig.add_annotation(
|
25 |
+
text="Blockchain data loading disabled - placeholder visualization",
|
26 |
+
x=0.5, y=0.5, xref="paper", yref="paper",
|
27 |
+
showarrow=False, font=dict(size=20)
|
28 |
+
)
|
29 |
+
return fig
|
30 |
+
|
31 |
+
def create_active_agents_visualizations():
|
32 |
+
"""Dummy implementation that returns a placeholder graph"""
|
33 |
+
fig = go.Figure()
|
34 |
+
fig.add_annotation(
|
35 |
+
text="Blockchain data loading disabled - placeholder visualization",
|
36 |
+
x=0.5, y=0.5, xref="paper", yref="paper",
|
37 |
+
showarrow=False, font=dict(size=20)
|
38 |
+
)
|
39 |
+
return fig
|
40 |
+
|
41 |
+
# Comment out the blockchain connection code
|
42 |
+
"""
|
43 |
# Load environment variables from .env file
|
44 |
# RPC URLs
|
45 |
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL')
|
|
|
73 |
raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.")
|
74 |
else:
|
75 |
print(f"Successfully connected to the {chain_name.capitalize()} network.")
|
76 |
+
"""
|
77 |
|
78 |
+
# Dummy blockchain functions to replace the commented ones
|
79 |
def get_transfers(integrator: str, wallet: str) -> str:
|
80 |
+
"""Dummy function that returns an empty result"""
|
81 |
+
return {"transfers": []}
|
|
|
|
|
82 |
|
83 |
def fetch_and_aggregate_transactions():
|
84 |
+
"""Dummy function that returns empty data"""
|
85 |
+
return [], {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# Function to parse the transaction data and prepare it for visualization
|
88 |
def process_transactions_and_agents(data):
|
89 |
+
"""Dummy function that returns empty dataframes"""
|
90 |
+
df_transactions = pd.DataFrame()
|
91 |
+
df_agents = pd.DataFrame(columns=['date', 'agent_count'])
|
92 |
+
df_agents_weekly = pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return df_transactions, df_agents, df_agents_weekly
|
94 |
|
95 |
# Function to create visualizations based on the metrics
|
96 |
def create_visualizations():
|
97 |
+
"""
|
98 |
+
# Commenting out the original visualization code temporarily for debugging
|
99 |
transactions_data = fetch_and_aggregate_transactions()
|
100 |
df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data)
|
101 |
|
|
|
314 |
)
|
315 |
|
316 |
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl
|
317 |
+
"""
|
318 |
+
# Placeholder figures for testing
|
319 |
+
fig_swaps_chain = go.Figure()
|
320 |
+
fig_swaps_chain.add_annotation(
|
321 |
+
text="Blockchain data loading disabled - placeholder visualization",
|
322 |
+
x=0.5, y=0.5, xref="paper", yref="paper",
|
323 |
+
showarrow=False, font=dict(size=20)
|
324 |
+
)
|
325 |
+
|
326 |
+
fig_bridges_chain = go.Figure()
|
327 |
+
fig_bridges_chain.add_annotation(
|
328 |
+
text="Blockchain data loading disabled - placeholder visualization",
|
329 |
+
x=0.5, y=0.5, xref="paper", yref="paper",
|
330 |
+
showarrow=False, font=dict(size=20)
|
331 |
+
)
|
332 |
+
|
333 |
+
fig_agents_registered = go.Figure()
|
334 |
+
fig_agents_registered.add_annotation(
|
335 |
+
text="Blockchain data loading disabled - placeholder visualization",
|
336 |
+
x=0.5, y=0.5, xref="paper", yref="paper",
|
337 |
+
showarrow=False, font=dict(size=20)
|
338 |
+
)
|
339 |
+
|
340 |
+
fig_tvl = go.Figure()
|
341 |
+
fig_tvl.add_annotation(
|
342 |
+
text="Blockchain data loading disabled - placeholder visualization",
|
343 |
+
x=0.5, y=0.5, xref="paper", yref="paper",
|
344 |
+
showarrow=False, font=dict(size=20)
|
345 |
+
)
|
346 |
+
|
347 |
+
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered, fig_tvl
|
348 |
|
349 |
# Gradio interface
|
350 |
def dashboard():
|
351 |
with gr.Blocks() as demo:
|
352 |
+
gr.Markdown("# Valory APR Metrics")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
+
# APR Metrics tab - the only tab
|
355 |
+
with gr.Tab("APR Metrics"):
|
356 |
+
with gr.Column():
|
357 |
+
refresh_btn = gr.Button("Refresh APR Data")
|
358 |
+
|
359 |
+
# Create containers for plotly figures
|
360 |
+
per_agent_graph = gr.Plot(label="APR Per Agent")
|
361 |
+
combined_graph = gr.Plot(label="Combined APR (All Agents)")
|
362 |
+
|
363 |
+
# Function to update both graphs
|
364 |
+
def update_apr_graphs():
|
365 |
+
# Generate visualizations and get figure objects directly
|
366 |
+
per_agent_fig, combined_fig, _ = generate_apr_visualizations()
|
367 |
+
return per_agent_fig, combined_fig
|
368 |
+
|
369 |
+
# Set up the button click event
|
370 |
+
refresh_btn.click(
|
371 |
+
fn=update_apr_graphs,
|
372 |
+
inputs=[],
|
373 |
+
outputs=[per_agent_graph, combined_graph]
|
374 |
+
)
|
375 |
+
|
376 |
+
# Initialize the graphs on load
|
377 |
+
# We'll use placeholder figures initially
|
378 |
+
import plotly.graph_objects as go
|
379 |
+
placeholder_fig = go.Figure()
|
380 |
+
placeholder_fig.add_annotation(
|
381 |
+
text="Click 'Refresh APR Data' to load APR graphs",
|
382 |
+
x=0.5, y=0.5,
|
383 |
+
showarrow=False,
|
384 |
+
font=dict(size=15)
|
385 |
+
)
|
386 |
+
per_agent_graph.value = placeholder_fig
|
387 |
+
combined_graph.value = placeholder_fig
|
388 |
|
389 |
return demo
|
390 |
|
apr_visualization.py
ADDED
@@ -0,0 +1,588 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import matplotlib.dates as mdates
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
import plotly.express as px
|
7 |
+
from plotly.subplots import make_subplots
|
8 |
+
import random
|
9 |
+
from datetime import datetime, timedelta
|
10 |
+
import requests
|
11 |
+
import sys
|
12 |
+
import json
|
13 |
+
from typing import List, Dict, Any
|
14 |
+
|
15 |
+
# Global variable to store the data for reuse
|
16 |
+
global_df = None
|
17 |
+
|
18 |
+
# Configuration
|
19 |
+
API_BASE_URL = "http://65.0.131.34:8000"
|
20 |
+
|
21 |
+
def get_agent_type_by_name(type_name: str) -> Dict[str, Any]:
|
22 |
+
"""Get agent type by name"""
|
23 |
+
response = requests.get(f"{API_BASE_URL}/api/agent-types/name/{type_name}")
|
24 |
+
if response.status_code == 404:
|
25 |
+
print(f"Error: Agent type '{type_name}' not found")
|
26 |
+
return None
|
27 |
+
response.raise_for_status()
|
28 |
+
return response.json()
|
29 |
+
|
30 |
+
def get_attribute_definition_by_name(attr_name: str) -> Dict[str, Any]:
|
31 |
+
"""Get attribute definition by name"""
|
32 |
+
response = requests.get(f"{API_BASE_URL}/api/attributes/name/{attr_name}")
|
33 |
+
if response.status_code == 404:
|
34 |
+
print(f"Error: Attribute definition '{attr_name}' not found")
|
35 |
+
return None
|
36 |
+
response.raise_for_status()
|
37 |
+
return response.json()
|
38 |
+
|
39 |
+
def get_agents_by_type(type_id: int) -> List[Dict[str, Any]]:
|
40 |
+
"""Get all agents of a specific type"""
|
41 |
+
response = requests.get(f"{API_BASE_URL}/api/agent-types/{type_id}/agents/")
|
42 |
+
if response.status_code == 404:
|
43 |
+
print(f"No agents found for type ID {type_id}")
|
44 |
+
return []
|
45 |
+
response.raise_for_status()
|
46 |
+
return response.json()
|
47 |
+
|
48 |
+
def get_attribute_values_by_type_and_attr(agents: List[Dict[str, Any]], attr_def_id: int) -> List[Dict[str, Any]]:
|
49 |
+
"""Get all attribute values for a specific attribute definition across all agents of a given list"""
|
50 |
+
all_attributes = []
|
51 |
+
|
52 |
+
# For each agent, get their attributes and filter for the one we want
|
53 |
+
for agent in agents:
|
54 |
+
agent_id = agent["agent_id"]
|
55 |
+
|
56 |
+
# Call the /api/agents/{agent_id}/attributes/ endpoint
|
57 |
+
response = requests.get(f"{API_BASE_URL}/api/agents/{agent_id}/attributes/", params={"limit": 1000})
|
58 |
+
if response.status_code == 404:
|
59 |
+
print(f"No attributes found for agent ID {agent_id}")
|
60 |
+
continue
|
61 |
+
|
62 |
+
try:
|
63 |
+
response.raise_for_status()
|
64 |
+
agent_attrs = response.json()
|
65 |
+
|
66 |
+
# Filter for the specific attribute definition ID
|
67 |
+
filtered_attrs = [attr for attr in agent_attrs if attr.get("attr_def_id") == attr_def_id]
|
68 |
+
all_attributes.extend(filtered_attrs)
|
69 |
+
except requests.exceptions.RequestException as e:
|
70 |
+
print(f"Error fetching attributes for agent ID {agent_id}: {e}")
|
71 |
+
|
72 |
+
return all_attributes
|
73 |
+
|
74 |
+
def get_agent_name(agent_id: int, agents: List[Dict[str, Any]]) -> str:
|
75 |
+
"""Get agent name from agent ID"""
|
76 |
+
for agent in agents:
|
77 |
+
if agent["agent_id"] == agent_id:
|
78 |
+
return agent["agent_name"]
|
79 |
+
return "Unknown"
|
80 |
+
|
81 |
+
def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
82 |
+
"""Extract APR value and timestamp from JSON value"""
|
83 |
+
try:
|
84 |
+
# The APR value is stored in the json_value field
|
85 |
+
if attr["json_value"] is None:
|
86 |
+
return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False}
|
87 |
+
|
88 |
+
# If json_value is a string, parse it
|
89 |
+
if isinstance(attr["json_value"], str):
|
90 |
+
json_data = json.loads(attr["json_value"])
|
91 |
+
else:
|
92 |
+
json_data = attr["json_value"]
|
93 |
+
|
94 |
+
apr = json_data.get("apr")
|
95 |
+
timestamp = json_data.get("timestamp")
|
96 |
+
|
97 |
+
# Convert timestamp to datetime if it exists
|
98 |
+
timestamp_dt = None
|
99 |
+
if timestamp:
|
100 |
+
timestamp_dt = datetime.fromtimestamp(timestamp)
|
101 |
+
|
102 |
+
return {"apr": apr, "timestamp": timestamp_dt, "agent_id": attr["agent_id"], "is_dummy": False}
|
103 |
+
except (json.JSONDecodeError, KeyError, TypeError) as e:
|
104 |
+
print(f"Error parsing JSON value: {e}")
|
105 |
+
return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False}
|
106 |
+
|
107 |
+
def fetch_apr_data_from_db():
|
108 |
+
"""
|
109 |
+
Fetch APR data from database using the API.
|
110 |
+
"""
|
111 |
+
global global_df
|
112 |
+
|
113 |
+
try:
|
114 |
+
# Step 1: Find the Modius agent type
|
115 |
+
modius_type = get_agent_type_by_name("Modius")
|
116 |
+
if not modius_type:
|
117 |
+
print("Modius agent type not found, using placeholder data")
|
118 |
+
global_df = pd.DataFrame([])
|
119 |
+
return global_df
|
120 |
+
|
121 |
+
type_id = modius_type["type_id"]
|
122 |
+
|
123 |
+
# Step 2: Find the APR attribute definition
|
124 |
+
apr_attr_def = get_attribute_definition_by_name("APR")
|
125 |
+
if not apr_attr_def:
|
126 |
+
print("APR attribute definition not found, using placeholder data")
|
127 |
+
global_df = pd.DataFrame([])
|
128 |
+
return global_df
|
129 |
+
|
130 |
+
attr_def_id = apr_attr_def["attr_def_id"]
|
131 |
+
|
132 |
+
# Step 3: Get all agents of type Modius
|
133 |
+
modius_agents = get_agents_by_type(type_id)
|
134 |
+
if not modius_agents:
|
135 |
+
print("No agents of type 'Modius' found")
|
136 |
+
global_df = pd.DataFrame([])
|
137 |
+
return global_df
|
138 |
+
|
139 |
+
# Step 4: Fetch all APR values for Modius agents
|
140 |
+
apr_attributes = get_attribute_values_by_type_and_attr(modius_agents, attr_def_id)
|
141 |
+
if not apr_attributes:
|
142 |
+
print("No APR values found for 'Modius' agents")
|
143 |
+
global_df = pd.DataFrame([])
|
144 |
+
return global_df
|
145 |
+
|
146 |
+
# Step 5: Extract APR data
|
147 |
+
apr_data_list = []
|
148 |
+
for attr in apr_attributes:
|
149 |
+
apr_data = extract_apr_value(attr)
|
150 |
+
if apr_data["apr"] is not None and apr_data["timestamp"] is not None:
|
151 |
+
# Get agent name
|
152 |
+
agent_name = get_agent_name(attr["agent_id"], modius_agents)
|
153 |
+
# Add agent name to the data
|
154 |
+
apr_data["agent_name"] = agent_name
|
155 |
+
# Add is_dummy flag (all real data)
|
156 |
+
apr_data["is_dummy"] = False
|
157 |
+
|
158 |
+
# Mark negative values as "Performance" metrics
|
159 |
+
if apr_data["apr"] < 0:
|
160 |
+
apr_data["metric_type"] = "Performance"
|
161 |
+
else:
|
162 |
+
apr_data["metric_type"] = "APR"
|
163 |
+
|
164 |
+
apr_data_list.append(apr_data)
|
165 |
+
|
166 |
+
# Convert list of dictionaries to DataFrame
|
167 |
+
if not apr_data_list:
|
168 |
+
print("No valid APR data extracted")
|
169 |
+
global_df = pd.DataFrame([])
|
170 |
+
return global_df
|
171 |
+
|
172 |
+
global_df = pd.DataFrame(apr_data_list)
|
173 |
+
return global_df
|
174 |
+
|
175 |
+
except requests.exceptions.RequestException as e:
|
176 |
+
print(f"API request error: {e}")
|
177 |
+
global_df = pd.DataFrame([])
|
178 |
+
return global_df
|
179 |
+
except Exception as e:
|
180 |
+
print(f"Error fetching APR data: {e}")
|
181 |
+
global_df = pd.DataFrame([])
|
182 |
+
return global_df
|
183 |
+
|
184 |
+
def generate_apr_visualizations():
|
185 |
+
"""Generate APR visualizations with real data only (no dummy data)"""
|
186 |
+
global global_df
|
187 |
+
|
188 |
+
# Fetch data from database
|
189 |
+
df = fetch_apr_data_from_db()
|
190 |
+
|
191 |
+
# If we got no data at all, return placeholder figures
|
192 |
+
if df.empty:
|
193 |
+
print("No APR data available. Using fallback visualization.")
|
194 |
+
# Create empty visualizations with a message using Plotly
|
195 |
+
fig = go.Figure()
|
196 |
+
fig.add_annotation(
|
197 |
+
x=0.5, y=0.5,
|
198 |
+
text="No APR data available",
|
199 |
+
font=dict(size=20),
|
200 |
+
showarrow=False
|
201 |
+
)
|
202 |
+
fig.update_layout(
|
203 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
204 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
|
205 |
+
)
|
206 |
+
|
207 |
+
# Save as static files for reference
|
208 |
+
fig.write_html("modius_apr_per_agent_graph.html")
|
209 |
+
fig.write_image("modius_apr_per_agent_graph.png")
|
210 |
+
fig.write_html("modius_apr_combined_graph.html")
|
211 |
+
fig.write_image("modius_apr_combined_graph.png")
|
212 |
+
|
213 |
+
csv_file = None
|
214 |
+
return fig, fig, csv_file
|
215 |
+
|
216 |
+
# No longer generating dummy data
|
217 |
+
# Set global_df for access by other functions
|
218 |
+
global_df = df
|
219 |
+
|
220 |
+
# Save to CSV before creating visualizations
|
221 |
+
csv_file = save_to_csv(df)
|
222 |
+
|
223 |
+
# Create per-agent time series graph (returns figure object)
|
224 |
+
per_agent_fig = create_time_series_graph_per_agent(df)
|
225 |
+
|
226 |
+
# Create combined time series graph (returns figure object)
|
227 |
+
combined_fig = create_combined_time_series_graph(df)
|
228 |
+
|
229 |
+
return per_agent_fig, combined_fig, csv_file
|
230 |
+
|
231 |
+
def create_time_series_graph_per_agent(df):
|
232 |
+
"""Create a time series graph for each agent using Plotly"""
|
233 |
+
# Get unique agents
|
234 |
+
unique_agents = df['agent_id'].unique()
|
235 |
+
|
236 |
+
if len(unique_agents) == 0:
|
237 |
+
print("No agent data to plot")
|
238 |
+
fig = go.Figure()
|
239 |
+
fig.add_annotation(
|
240 |
+
text="No agent data available",
|
241 |
+
x=0.5, y=0.5,
|
242 |
+
showarrow=False, font=dict(size=20)
|
243 |
+
)
|
244 |
+
return fig
|
245 |
+
|
246 |
+
# Create a subplot figure for each agent
|
247 |
+
fig = make_subplots(rows=len(unique_agents), cols=1,
|
248 |
+
subplot_titles=[f"Agent: {df[df['agent_id'] == agent_id]['agent_name'].iloc[0]}"
|
249 |
+
for agent_id in unique_agents],
|
250 |
+
vertical_spacing=0.1)
|
251 |
+
|
252 |
+
# Plot data for each agent
|
253 |
+
for i, agent_id in enumerate(unique_agents):
|
254 |
+
agent_data = df[df['agent_id'] == agent_id].copy()
|
255 |
+
agent_name = agent_data['agent_name'].iloc[0]
|
256 |
+
row = i + 1
|
257 |
+
|
258 |
+
# Add zero line to separate APR and Performance
|
259 |
+
fig.add_shape(
|
260 |
+
type="line", line=dict(dash="solid", width=1.5, color="black"),
|
261 |
+
y0=0, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
|
262 |
+
row=row, col=1
|
263 |
+
)
|
264 |
+
|
265 |
+
# Add background colors
|
266 |
+
fig.add_shape(
|
267 |
+
type="rect", fillcolor="rgba(230, 243, 255, 0.3)", line=dict(width=0),
|
268 |
+
y0=0, y1=1000, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
|
269 |
+
row=row, col=1, layer="below"
|
270 |
+
)
|
271 |
+
fig.add_shape(
|
272 |
+
type="rect", fillcolor="rgba(255, 230, 230, 0.3)", line=dict(width=0),
|
273 |
+
y0=-1000, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
|
274 |
+
row=row, col=1, layer="below"
|
275 |
+
)
|
276 |
+
|
277 |
+
# Create separate dataframes for different data types
|
278 |
+
apr_data = agent_data[agent_data['metric_type'] == 'APR']
|
279 |
+
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
|
280 |
+
|
281 |
+
# Sort all data by timestamp for the line plots
|
282 |
+
combined_agent_data = agent_data.sort_values('timestamp')
|
283 |
+
|
284 |
+
# Add main line connecting all points
|
285 |
+
fig.add_trace(
|
286 |
+
go.Scatter(
|
287 |
+
x=combined_agent_data['timestamp'],
|
288 |
+
y=combined_agent_data['apr'],
|
289 |
+
mode='lines',
|
290 |
+
line=dict(color='purple', width=2),
|
291 |
+
name=f'{agent_name}',
|
292 |
+
legendgroup=agent_name,
|
293 |
+
showlegend=(i == 0), # Only show in legend once
|
294 |
+
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
|
295 |
+
),
|
296 |
+
row=row, col=1
|
297 |
+
)
|
298 |
+
|
299 |
+
# Add scatter points for APR values
|
300 |
+
if not apr_data.empty:
|
301 |
+
fig.add_trace(
|
302 |
+
go.Scatter(
|
303 |
+
x=apr_data['timestamp'],
|
304 |
+
y=apr_data['apr'],
|
305 |
+
mode='markers',
|
306 |
+
marker=dict(color='blue', size=10, symbol='circle'),
|
307 |
+
name='APR',
|
308 |
+
legendgroup='APR',
|
309 |
+
showlegend=(i == 0),
|
310 |
+
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<extra></extra>'
|
311 |
+
),
|
312 |
+
row=row, col=1
|
313 |
+
)
|
314 |
+
|
315 |
+
# Add scatter points for Performance values
|
316 |
+
if not perf_data.empty:
|
317 |
+
fig.add_trace(
|
318 |
+
go.Scatter(
|
319 |
+
x=perf_data['timestamp'],
|
320 |
+
y=perf_data['apr'],
|
321 |
+
mode='markers',
|
322 |
+
marker=dict(color='red', size=10, symbol='square'),
|
323 |
+
name='Performance',
|
324 |
+
legendgroup='Performance',
|
325 |
+
showlegend=(i == 0),
|
326 |
+
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<extra></extra>'
|
327 |
+
),
|
328 |
+
row=row, col=1
|
329 |
+
)
|
330 |
+
|
331 |
+
# Update axes
|
332 |
+
fig.update_xaxes(title_text="Time", row=row, col=1)
|
333 |
+
fig.update_yaxes(title_text="Value", row=row, col=1, gridcolor='rgba(0,0,0,0.1)')
|
334 |
+
|
335 |
+
# Update layout
|
336 |
+
fig.update_layout(
|
337 |
+
height=400 * len(unique_agents),
|
338 |
+
width=1000,
|
339 |
+
title_text="APR and Performance Values per Agent",
|
340 |
+
template="plotly_white",
|
341 |
+
legend=dict(
|
342 |
+
orientation="h",
|
343 |
+
yanchor="bottom",
|
344 |
+
y=1.02,
|
345 |
+
xanchor="right",
|
346 |
+
x=1
|
347 |
+
),
|
348 |
+
margin=dict(r=20, l=20, t=30, b=20),
|
349 |
+
hovermode="closest"
|
350 |
+
)
|
351 |
+
|
352 |
+
# Save the figure (still useful for reference)
|
353 |
+
graph_file = "modius_apr_per_agent_graph.html"
|
354 |
+
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
|
355 |
+
|
356 |
+
# Also save as image for compatibility
|
357 |
+
img_file = "modius_apr_per_agent_graph.png"
|
358 |
+
fig.write_image(img_file)
|
359 |
+
|
360 |
+
print(f"Per-agent graph saved to {graph_file} and {img_file}")
|
361 |
+
|
362 |
+
# Return the figure object for direct use in Gradio
|
363 |
+
return fig
|
364 |
+
|
365 |
+
def create_combined_time_series_graph(df):
|
366 |
+
"""Create a combined time series graph for all agents using Plotly"""
|
367 |
+
if len(df) == 0:
|
368 |
+
print("No data to plot combined graph")
|
369 |
+
fig = go.Figure()
|
370 |
+
fig.add_annotation(
|
371 |
+
text="No data available",
|
372 |
+
x=0.5, y=0.5,
|
373 |
+
showarrow=False, font=dict(size=20)
|
374 |
+
)
|
375 |
+
return fig
|
376 |
+
|
377 |
+
# Create Plotly figure
|
378 |
+
fig = go.Figure()
|
379 |
+
|
380 |
+
# Get unique agents
|
381 |
+
unique_agents = df['agent_id'].unique()
|
382 |
+
|
383 |
+
# Define a color scale for different agents
|
384 |
+
colors = px.colors.qualitative.Plotly[:len(unique_agents)]
|
385 |
+
|
386 |
+
# Add background shapes for APR and Performance regions
|
387 |
+
min_time = df['timestamp'].min()
|
388 |
+
max_time = df['timestamp'].max()
|
389 |
+
|
390 |
+
# Add shape for APR region (above zero)
|
391 |
+
fig.add_shape(
|
392 |
+
type="rect",
|
393 |
+
fillcolor="rgba(230, 243, 255, 0.3)",
|
394 |
+
line=dict(width=0),
|
395 |
+
y0=0, y1=1000,
|
396 |
+
x0=min_time, x1=max_time,
|
397 |
+
layer="below"
|
398 |
+
)
|
399 |
+
|
400 |
+
# Add shape for Performance region (below zero)
|
401 |
+
fig.add_shape(
|
402 |
+
type="rect",
|
403 |
+
fillcolor="rgba(255, 230, 230, 0.3)",
|
404 |
+
line=dict(width=0),
|
405 |
+
y0=-1000, y1=0,
|
406 |
+
x0=min_time, x1=max_time,
|
407 |
+
layer="below"
|
408 |
+
)
|
409 |
+
|
410 |
+
# Add zero line
|
411 |
+
fig.add_shape(
|
412 |
+
type="line",
|
413 |
+
line=dict(dash="solid", width=1.5, color="black"),
|
414 |
+
y0=0, y1=0,
|
415 |
+
x0=min_time, x1=max_time
|
416 |
+
)
|
417 |
+
|
418 |
+
# Add data for each agent
|
419 |
+
for i, agent_id in enumerate(unique_agents):
|
420 |
+
agent_data = df[df['agent_id'] == agent_id].copy()
|
421 |
+
agent_name = agent_data['agent_name'].iloc[0]
|
422 |
+
color = colors[i % len(colors)]
|
423 |
+
|
424 |
+
# Sort the data by timestamp
|
425 |
+
agent_data = agent_data.sort_values('timestamp')
|
426 |
+
|
427 |
+
# Add the combined line for both APR and Performance
|
428 |
+
fig.add_trace(
|
429 |
+
go.Scatter(
|
430 |
+
x=agent_data['timestamp'],
|
431 |
+
y=agent_data['apr'],
|
432 |
+
mode='lines',
|
433 |
+
line=dict(color=color, width=2),
|
434 |
+
name=f'{agent_name}',
|
435 |
+
legendgroup=agent_name,
|
436 |
+
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
|
437 |
+
)
|
438 |
+
)
|
439 |
+
|
440 |
+
# Add scatter points for APR values
|
441 |
+
apr_data = agent_data[agent_data['metric_type'] == 'APR']
|
442 |
+
if not apr_data.empty:
|
443 |
+
fig.add_trace(
|
444 |
+
go.Scatter(
|
445 |
+
x=apr_data['timestamp'],
|
446 |
+
y=apr_data['apr'],
|
447 |
+
mode='markers',
|
448 |
+
marker=dict(color=color, symbol='circle', size=8),
|
449 |
+
name=f'{agent_name} APR',
|
450 |
+
legendgroup=agent_name,
|
451 |
+
showlegend=False,
|
452 |
+
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
|
453 |
+
)
|
454 |
+
)
|
455 |
+
|
456 |
+
# Add scatter points for Performance values
|
457 |
+
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
|
458 |
+
if not perf_data.empty:
|
459 |
+
fig.add_trace(
|
460 |
+
go.Scatter(
|
461 |
+
x=perf_data['timestamp'],
|
462 |
+
y=perf_data['apr'],
|
463 |
+
mode='markers',
|
464 |
+
marker=dict(color=color, symbol='square', size=8),
|
465 |
+
name=f'{agent_name} Perf',
|
466 |
+
legendgroup=agent_name,
|
467 |
+
showlegend=False,
|
468 |
+
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
|
469 |
+
)
|
470 |
+
)
|
471 |
+
|
472 |
+
# Update layout
|
473 |
+
fig.update_layout(
|
474 |
+
title="APR and Performance Values for All Agents",
|
475 |
+
xaxis_title="Time",
|
476 |
+
yaxis_title="Value",
|
477 |
+
template="plotly_white",
|
478 |
+
height=600,
|
479 |
+
width=1000,
|
480 |
+
legend=dict(
|
481 |
+
orientation="h",
|
482 |
+
yanchor="bottom",
|
483 |
+
y=1.02,
|
484 |
+
xanchor="right",
|
485 |
+
x=1,
|
486 |
+
groupclick="toggleitem"
|
487 |
+
),
|
488 |
+
margin=dict(r=20, l=20, t=30, b=20),
|
489 |
+
hovermode="closest"
|
490 |
+
)
|
491 |
+
|
492 |
+
# Update axes
|
493 |
+
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)')
|
494 |
+
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)')
|
495 |
+
|
496 |
+
# Save the figure (still useful for reference)
|
497 |
+
graph_file = "modius_apr_combined_graph.html"
|
498 |
+
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
|
499 |
+
|
500 |
+
# Also save as image for compatibility
|
501 |
+
img_file = "modius_apr_combined_graph.png"
|
502 |
+
fig.write_image(img_file)
|
503 |
+
|
504 |
+
print(f"Combined graph saved to {graph_file} and {img_file}")
|
505 |
+
|
506 |
+
# Return the figure object for direct use in Gradio
|
507 |
+
return fig
|
508 |
+
|
509 |
+
def save_to_csv(df):
|
510 |
+
"""Save the APR data DataFrame to a CSV file and return the file path"""
|
511 |
+
if df.empty:
|
512 |
+
print("No APR data to save to CSV")
|
513 |
+
return None
|
514 |
+
|
515 |
+
# Define the CSV file path
|
516 |
+
csv_file = "modius_apr_values.csv"
|
517 |
+
|
518 |
+
# Save to CSV
|
519 |
+
df.to_csv(csv_file, index=False)
|
520 |
+
print(f"APR data saved to {csv_file}")
|
521 |
+
|
522 |
+
# Also generate a statistics CSV file
|
523 |
+
stats_df = generate_statistics_from_data(df)
|
524 |
+
stats_csv = "modius_apr_statistics.csv"
|
525 |
+
stats_df.to_csv(stats_csv, index=False)
|
526 |
+
print(f"Statistics saved to {stats_csv}")
|
527 |
+
|
528 |
+
return csv_file
|
529 |
+
|
530 |
+
def generate_statistics_from_data(df):
|
531 |
+
"""Generate statistics from the APR data"""
|
532 |
+
if df.empty:
|
533 |
+
return pd.DataFrame()
|
534 |
+
|
535 |
+
# Get unique agents
|
536 |
+
unique_agents = df['agent_id'].unique()
|
537 |
+
stats_list = []
|
538 |
+
|
539 |
+
# Generate per-agent statistics
|
540 |
+
for agent_id in unique_agents:
|
541 |
+
agent_data = df[df['agent_id'] == agent_id]
|
542 |
+
agent_name = agent_data['agent_name'].iloc[0]
|
543 |
+
|
544 |
+
# APR statistics
|
545 |
+
apr_data = agent_data[agent_data['metric_type'] == 'APR']
|
546 |
+
real_apr = apr_data[apr_data['is_dummy'] == False]
|
547 |
+
|
548 |
+
# Performance statistics
|
549 |
+
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
|
550 |
+
real_perf = perf_data[perf_data['is_dummy'] == False]
|
551 |
+
|
552 |
+
stats = {
|
553 |
+
'agent_id': agent_id,
|
554 |
+
'agent_name': agent_name,
|
555 |
+
'total_points': len(agent_data),
|
556 |
+
'apr_points': len(apr_data),
|
557 |
+
'performance_points': len(perf_data),
|
558 |
+
'real_apr_points': len(real_apr),
|
559 |
+
'real_performance_points': len(real_perf),
|
560 |
+
'avg_apr': apr_data['apr'].mean() if not apr_data.empty else None,
|
561 |
+
'avg_performance': perf_data['apr'].mean() if not perf_data.empty else None,
|
562 |
+
'max_apr': apr_data['apr'].max() if not apr_data.empty else None,
|
563 |
+
'min_apr': apr_data['apr'].min() if not apr_data.empty else None,
|
564 |
+
'latest_timestamp': agent_data['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not agent_data.empty else None
|
565 |
+
}
|
566 |
+
stats_list.append(stats)
|
567 |
+
|
568 |
+
# Generate overall statistics
|
569 |
+
apr_only = df[df['metric_type'] == 'APR']
|
570 |
+
perf_only = df[df['metric_type'] == 'Performance']
|
571 |
+
|
572 |
+
overall_stats = {
|
573 |
+
'agent_id': 'ALL',
|
574 |
+
'agent_name': 'All Agents',
|
575 |
+
'total_points': len(df),
|
576 |
+
'apr_points': len(apr_only),
|
577 |
+
'performance_points': len(perf_only),
|
578 |
+
'real_apr_points': len(apr_only[apr_only['is_dummy'] == False]),
|
579 |
+
'real_performance_points': len(perf_only[perf_only['is_dummy'] == False]),
|
580 |
+
'avg_apr': apr_only['apr'].mean() if not apr_only.empty else None,
|
581 |
+
'avg_performance': perf_only['apr'].mean() if not perf_only.empty else None,
|
582 |
+
'max_apr': apr_only['apr'].max() if not apr_only.empty else None,
|
583 |
+
'min_apr': apr_only['apr'].min() if not apr_only.empty else None,
|
584 |
+
'latest_timestamp': df['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not df.empty else None
|
585 |
+
}
|
586 |
+
stats_list.append(overall_stats)
|
587 |
+
|
588 |
+
return pd.DataFrame(stats_list)
|