Spaces:
Running
Running
gauravlochab
commited on
Commit
·
c009a22
1
Parent(s):
f1dade8
feat: add detailed debug logging for time series graph creation and simplify APR data plotting
Browse files
app.py
CHANGED
@@ -470,6 +470,69 @@ def create_time_series_graph_per_agent(df):
|
|
470 |
# Return the figure object for direct use in Gradio
|
471 |
return fig
|
472 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
def create_combined_time_series_graph(df):
|
474 |
"""Create a combined time series graph for all agents using Plotly"""
|
475 |
if len(df) == 0:
|
@@ -585,51 +648,42 @@ def create_combined_time_series_graph(df):
|
|
585 |
for idx, row in agent_data.iterrows():
|
586 |
logger.info(f" Point {idx}: timestamp={row['timestamp']}, apr={row['apr']}, type={row['metric_type']}")
|
587 |
|
588 |
-
#
|
589 |
apr_data = agent_data[agent_data['metric_type'] == 'APR']
|
590 |
-
if not apr_data.empty:
|
591 |
-
logger.info(f" Adding {len(apr_data)} APR markers for {agent_name}")
|
592 |
-
for idx, row in apr_data.iterrows():
|
593 |
-
logger.info(f" APR marker: timestamp={row['timestamp']}, apr={row['apr']}")
|
594 |
-
|
595 |
-
# Use explicit Python boolean for showlegend
|
596 |
-
is_first_point = bool(idx == apr_data.index[0])
|
597 |
-
fig.add_trace(
|
598 |
-
go.Scatter(
|
599 |
-
x=[row['timestamp']],
|
600 |
-
y=[row['apr']],
|
601 |
-
mode='markers',
|
602 |
-
marker=dict(
|
603 |
-
color='blue', # Force consistent color
|
604 |
-
symbol='circle',
|
605 |
-
size=14, # Make markers larger
|
606 |
-
line=dict(
|
607 |
-
width=2,
|
608 |
-
color='black'
|
609 |
-
)
|
610 |
-
),
|
611 |
-
name=f'{agent_name} APR',
|
612 |
-
legendgroup=agent_name,
|
613 |
-
showlegend=is_first_point, # Use native Python boolean
|
614 |
-
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
|
615 |
-
)
|
616 |
-
)
|
617 |
|
618 |
-
#
|
619 |
-
#
|
620 |
if not apr_data.empty:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
621 |
fig.add_trace(
|
622 |
go.Scatter(
|
623 |
-
x=
|
624 |
-
y=
|
625 |
-
mode='lines',
|
|
|
|
|
|
|
|
|
|
|
|
|
626 |
line=dict(color='blue', width=2),
|
627 |
-
name=
|
628 |
legendgroup=agent_name,
|
629 |
-
showlegend=
|
630 |
-
hovertemplate='Time: %{x}<br>
|
631 |
)
|
632 |
)
|
|
|
633 |
|
634 |
# Update layout - use simple boolean values everywhere
|
635 |
fig.update_layout(
|
@@ -672,6 +726,9 @@ def create_combined_time_series_graph(df):
|
|
672 |
# SIMPLIFIED APPROACH: Do a direct plot without markers for comparison
|
673 |
# This creates a simple, reliable fallback plot if the advanced one fails
|
674 |
try:
|
|
|
|
|
|
|
675 |
# Save the figure (still useful for reference)
|
676 |
graph_file = "modius_apr_combined_graph.html"
|
677 |
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
|
|
|
470 |
# Return the figure object for direct use in Gradio
|
471 |
return fig
|
472 |
|
473 |
+
def write_debug_info(df, fig):
|
474 |
+
"""Write detailed debug information to logs for troubleshooting"""
|
475 |
+
try:
|
476 |
+
logger.info("==== GRAPH DEBUG INFORMATION ====")
|
477 |
+
logger.info(f"Total data points: {len(df)}")
|
478 |
+
logger.info(f"DataFrame columns: {df.columns.tolist()}")
|
479 |
+
|
480 |
+
logger.info("Data types:")
|
481 |
+
for col in df.columns:
|
482 |
+
logger.info(f" {col}: {df[col].dtype}")
|
483 |
+
|
484 |
+
# Output sample data points
|
485 |
+
logger.info("Sample data (up to 5 rows):")
|
486 |
+
sample_df = df.head(5)
|
487 |
+
for idx, row in sample_df.iterrows():
|
488 |
+
logger.info(f" Row {idx}: {row.to_dict()}")
|
489 |
+
|
490 |
+
# Output Plotly figure structure
|
491 |
+
logger.info("Plotly Figure Structure:")
|
492 |
+
logger.info(f" Number of traces: {len(fig.data)}")
|
493 |
+
for i, trace in enumerate(fig.data):
|
494 |
+
logger.info(f" Trace {i}:")
|
495 |
+
logger.info(f" Type: {trace.type}")
|
496 |
+
logger.info(f" Mode: {trace.mode if hasattr(trace, 'mode') else 'N/A'}")
|
497 |
+
logger.info(f" Name: {trace.name}")
|
498 |
+
|
499 |
+
# Only log first few values to avoid overwhelming logs
|
500 |
+
if hasattr(trace, 'x') and trace.x is not None and len(trace.x) > 0:
|
501 |
+
x_sample = str(trace.x[:2])
|
502 |
+
logger.info(f" X data sample (first 2): {x_sample}")
|
503 |
+
|
504 |
+
if hasattr(trace, 'y') and trace.y is not None and len(trace.y) > 0:
|
505 |
+
y_sample = str(trace.y[:2])
|
506 |
+
logger.info(f" Y data sample (first 2): {y_sample}")
|
507 |
+
|
508 |
+
if hasattr(trace, 'line') and hasattr(trace.line, 'color'):
|
509 |
+
logger.info(f" Line color: {trace.line.color}")
|
510 |
+
|
511 |
+
if hasattr(trace, 'line') and hasattr(trace.line, 'width'):
|
512 |
+
logger.info(f" Line width: {trace.line.width}")
|
513 |
+
|
514 |
+
# Check environment
|
515 |
+
import os
|
516 |
+
import sys
|
517 |
+
import platform
|
518 |
+
|
519 |
+
logger.info("Environment Information:")
|
520 |
+
logger.info(f" Platform: {platform.platform()}")
|
521 |
+
logger.info(f" Python version: {sys.version}")
|
522 |
+
logger.info(f" Running in Docker: {'DOCKER_CONTAINER' in os.environ}")
|
523 |
+
logger.info(f" Running in HF Space: {'SPACE_ID' in os.environ}")
|
524 |
+
|
525 |
+
# Plotly version
|
526 |
+
import plotly
|
527 |
+
logger.info(f" Plotly version: {plotly.__version__}")
|
528 |
+
|
529 |
+
logger.info("End of debug info")
|
530 |
+
|
531 |
+
return True
|
532 |
+
except Exception as e:
|
533 |
+
logger.error(f"Error writing debug info: {e}")
|
534 |
+
return False
|
535 |
+
|
536 |
def create_combined_time_series_graph(df):
|
537 |
"""Create a combined time series graph for all agents using Plotly"""
|
538 |
if len(df) == 0:
|
|
|
648 |
for idx, row in agent_data.iterrows():
|
649 |
logger.info(f" Point {idx}: timestamp={row['timestamp']}, apr={row['apr']}, type={row['metric_type']}")
|
650 |
|
651 |
+
# Get the APR data - this is what we'll plot
|
652 |
apr_data = agent_data[agent_data['metric_type'] == 'APR']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
653 |
|
654 |
+
# SIMPLIFIED APPROACH: Use a single trace with lines+markers mode
|
655 |
+
# This is much more reliable across different platforms
|
656 |
if not apr_data.empty:
|
657 |
+
logger.info(f" Adding combined line+markers for {agent_name}")
|
658 |
+
|
659 |
+
# Explicitly convert to Python lists
|
660 |
+
x_values = apr_data['timestamp'].tolist()
|
661 |
+
y_values = apr_data['apr'].tolist()
|
662 |
+
|
663 |
+
# Log what we're about to plot
|
664 |
+
for i, (x, y) in enumerate(zip(x_values, y_values)):
|
665 |
+
logger.info(f" Point {i+1}: x={x}, y={y}")
|
666 |
+
|
667 |
+
# Use a single trace for both markers and lines
|
668 |
fig.add_trace(
|
669 |
go.Scatter(
|
670 |
+
x=x_values,
|
671 |
+
y=y_values,
|
672 |
+
mode='lines+markers', # Important: use both lines and markers
|
673 |
+
marker=dict(
|
674 |
+
color='blue',
|
675 |
+
symbol='circle',
|
676 |
+
size=12,
|
677 |
+
line=dict(width=2, color='black')
|
678 |
+
),
|
679 |
line=dict(color='blue', width=2),
|
680 |
+
name=agent_name,
|
681 |
legendgroup=agent_name,
|
682 |
+
showlegend=True,
|
683 |
+
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
|
684 |
)
|
685 |
)
|
686 |
+
logger.info(f" Added combined line+markers trace for {agent_name}")
|
687 |
|
688 |
# Update layout - use simple boolean values everywhere
|
689 |
fig.update_layout(
|
|
|
726 |
# SIMPLIFIED APPROACH: Do a direct plot without markers for comparison
|
727 |
# This creates a simple, reliable fallback plot if the advanced one fails
|
728 |
try:
|
729 |
+
# Write detailed debug information before saving the figure
|
730 |
+
write_debug_info(df, fig)
|
731 |
+
|
732 |
# Save the figure (still useful for reference)
|
733 |
graph_file = "modius_apr_combined_graph.html"
|
734 |
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
|