Spaces:
Running
Running
gauravlochab
commited on
Commit
·
fdcd7fd
1
Parent(s):
5591735
feat: enhance hover data to include formatted timestamps and active agent counts for the last 24 hours
Browse files
app.py
CHANGED
@@ -932,8 +932,16 @@ def create_combined_roi_time_series_graph(df):
|
|
932 |
hover_data_roi = []
|
933 |
for idx, row in avg_roi_data_with_ma.iterrows():
|
934 |
timestamp = row['timestamp']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
935 |
hover_data_roi.append(
|
936 |
-
f"Time: {
|
937 |
)
|
938 |
|
939 |
fig.add_trace(
|
@@ -1581,8 +1589,16 @@ def create_combined_time_series_graph(df):
|
|
1581 |
hover_data_apr = []
|
1582 |
for idx, row in avg_apr_data_with_ma.iterrows():
|
1583 |
timestamp = row['timestamp']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1584 |
hover_data_apr.append(
|
1585 |
-
f"Time: {
|
1586 |
)
|
1587 |
|
1588 |
fig.add_trace(
|
@@ -1614,13 +1630,21 @@ def create_combined_time_series_graph(df):
|
|
1614 |
hover_data_adj = []
|
1615 |
for idx, row in filled_avg_apr_data.iterrows():
|
1616 |
timestamp = row['timestamp']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1617 |
if pd.notna(row['adjusted_moving_avg']):
|
1618 |
hover_data_adj.append(
|
1619 |
-
f"Time: {
|
1620 |
)
|
1621 |
else:
|
1622 |
hover_data_adj.append(
|
1623 |
-
f"Time: {
|
1624 |
)
|
1625 |
|
1626 |
fig.add_trace(
|
|
|
932 |
hover_data_roi = []
|
933 |
for idx, row in avg_roi_data_with_ma.iterrows():
|
934 |
timestamp = row['timestamp']
|
935 |
+
# Format timestamp to show only up to seconds (not milliseconds)
|
936 |
+
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
937 |
+
|
938 |
+
# Calculate number of active agents in the last 24 hours
|
939 |
+
time_24h_ago = timestamp - pd.Timedelta(hours=24)
|
940 |
+
active_agents = len(df[(df['timestamp'] >= time_24h_ago) &
|
941 |
+
(df['timestamp'] <= timestamp)]['agent_id'].unique())
|
942 |
+
|
943 |
hover_data_roi.append(
|
944 |
+
f"Time: {formatted_timestamp}<br>Avg ROI (3d window): {row['moving_avg']:.2f}%<br>Active agents (24h): {active_agents}"
|
945 |
)
|
946 |
|
947 |
fig.add_trace(
|
|
|
1589 |
hover_data_apr = []
|
1590 |
for idx, row in avg_apr_data_with_ma.iterrows():
|
1591 |
timestamp = row['timestamp']
|
1592 |
+
# Format timestamp to show only up to seconds (not milliseconds)
|
1593 |
+
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
1594 |
+
|
1595 |
+
# Calculate number of active agents in the last 24 hours
|
1596 |
+
time_24h_ago = timestamp - pd.Timedelta(hours=24)
|
1597 |
+
active_agents = len(apr_data[(apr_data['timestamp'] >= time_24h_ago) &
|
1598 |
+
(apr_data['timestamp'] <= timestamp)]['agent_id'].unique())
|
1599 |
+
|
1600 |
hover_data_apr.append(
|
1601 |
+
f"Time: {formatted_timestamp}<br>Avg APR (3d window): {row['moving_avg']:.2f}<br>Active agents (24h): {active_agents}"
|
1602 |
)
|
1603 |
|
1604 |
fig.add_trace(
|
|
|
1630 |
hover_data_adj = []
|
1631 |
for idx, row in filled_avg_apr_data.iterrows():
|
1632 |
timestamp = row['timestamp']
|
1633 |
+
# Format timestamp to show only up to seconds (not milliseconds)
|
1634 |
+
formatted_timestamp = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
1635 |
+
|
1636 |
+
# Calculate number of active agents in the last 24 hours
|
1637 |
+
time_24h_ago = timestamp - pd.Timedelta(hours=24)
|
1638 |
+
active_agents = len(apr_data[(apr_data['timestamp'] >= time_24h_ago) &
|
1639 |
+
(apr_data['timestamp'] <= timestamp)]['agent_id'].unique())
|
1640 |
+
|
1641 |
if pd.notna(row['adjusted_moving_avg']):
|
1642 |
hover_data_adj.append(
|
1643 |
+
f"Time: {formatted_timestamp}<br>Avg ETH Adjusted APR (3d window): {row['adjusted_moving_avg']:.2f}<br>Active agents (24h): {active_agents}"
|
1644 |
)
|
1645 |
else:
|
1646 |
hover_data_adj.append(
|
1647 |
+
f"Time: {formatted_timestamp}<br>Avg ETH Adjusted APR (3d window): N/A<br>Active agents (24h): {active_agents}"
|
1648 |
)
|
1649 |
|
1650 |
fig.add_trace(
|