""" Base chart class for creating visualizations. """ import plotly.graph_objects as go import plotly.express as px import pandas as pd import logging from datetime import datetime from typing import List, Dict, Any, Optional, Tuple from abc import ABC, abstractmethod from ..config.constants import CHART_CONFIG, CHART_COLORS, Y_AXIS_RANGES, FILE_PATHS from ..data.data_processor import DataProcessor logger = logging.getLogger(__name__) class BaseChart(ABC): """Base class for all chart visualizations.""" def __init__(self, data_processor: DataProcessor = None): self.data_processor = data_processor or DataProcessor() self.config = CHART_CONFIG self.colors = CHART_COLORS self.y_ranges = Y_AXIS_RANGES self.file_paths = FILE_PATHS @abstractmethod def create_chart(self, df: pd.DataFrame, **kwargs) -> go.Figure: """Create the chart visualization.""" pass def _create_base_figure(self) -> go.Figure: """Create a base figure with common settings.""" return go.Figure() def _add_background_shapes(self, fig: go.Figure, min_time: datetime, max_time: datetime, y_min: float, y_max: float) -> None: """Add background shapes for positive and negative regions.""" # Add shape for positive region (above zero) fig.add_shape( type="rect", fillcolor=self.colors['positive_region'], line=dict(width=0), y0=0, y1=y_max, x0=min_time, x1=max_time, layer="below" ) # Add shape for negative region (below zero) fig.add_shape( type="rect", fillcolor=self.colors['negative_region'], line=dict(width=0), y0=y_min, y1=0, x0=min_time, x1=max_time, layer="below" ) def _add_zero_line(self, fig: go.Figure, min_time: datetime, max_time: datetime) -> None: """Add a zero line to the chart.""" fig.add_shape( type="line", line=dict(dash="solid", width=1.5, color=self.colors['zero_line']), y0=0, y1=0, x0=min_time, x1=max_time ) def _update_layout(self, fig: go.Figure, title: str, y_axis_title: str = None, height: int = None, y_range: List[float] = None) -> None: """Update the figure layout with common settings.""" fig.update_layout( title=dict( text=title, font=dict( family=self.config['font_family'], size=self.config['title_size'], color="black", weight="bold" ) ), xaxis_title=None, yaxis_title=None, template=self.config['template'], height=height or self.config['height'], autosize=True, legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1, groupclick="toggleitem", font=dict( family=self.config['font_family'], size=self.config['legend_font_size'], color="black", weight="bold" ) ), margin=dict(r=30, l=120, t=40, b=50), hovermode="closest" ) # Add y-axis annotation if provided if y_axis_title: fig.add_annotation( x=-0.08, y=0 if y_range is None else (y_range[0] + y_range[1]) / 2, xref="paper", yref="y", text=y_axis_title, showarrow=False, font=dict( size=16, family=self.config['font_family'], color="black", weight="bold" ), textangle=-90, align="center" ) def _update_axes(self, fig: go.Figure, x_range: List[datetime] = None, y_range: List[float] = None, y_auto: bool = False) -> None: """Update the axes with common settings.""" # Update y-axis y_axis_config = { 'showgrid': True, 'gridwidth': 1, 'gridcolor': 'rgba(0,0,0,0.1)', 'tickformat': ".2f", 'tickfont': dict( size=self.config['axis_font_size'], family=self.config['font_family'], color="black", weight="bold" ), 'title': None } if y_auto: y_axis_config['autorange'] = True elif y_range: y_axis_config['autorange'] = False y_axis_config['range'] = y_range fig.update_yaxes(**y_axis_config) # Update x-axis x_axis_config = { 'showgrid': True, 'gridwidth': 1, 'gridcolor': 'rgba(0,0,0,0.1)', 'tickformat': "%b %d", 'tickangle': -30, 'tickfont': dict( size=self.config['axis_font_size'], family=self.config['font_family'], color="black", weight="bold" ), 'title': None } if x_range: x_axis_config['autorange'] = False x_axis_config['range'] = x_range fig.update_xaxes(**x_axis_config) def _add_agent_data_points(self, fig: go.Figure, df: pd.DataFrame, value_column: str, color_map: Dict[str, str], max_visible: int = None) -> None: """Add individual agent data points to the chart.""" if df.empty: return unique_agents = df['agent_name'].unique() max_visible = max_visible or self.config['max_visible_agents'] # Calculate agent activity to determine which to show by default agent_counts = df['agent_name'].value_counts() top_agents = agent_counts.nlargest(min(max_visible, len(agent_counts))).index.tolist() logger.info(f"Showing {len(top_agents)} agents by default out of {len(unique_agents)} total agents") for agent_name in unique_agents: agent_data = df[df['agent_name'] == agent_name] x_values = agent_data['timestamp'].tolist() y_values = agent_data[value_column].tolist() # Determine visibility is_visible = False # Hide all agent data points by default fig.add_trace( go.Scatter( x=x_values, y=y_values, mode='markers', marker=dict( color=color_map.get(agent_name, 'gray'), symbol='circle', size=10, line=dict(width=1, color='black') ), name=f'Agent: {agent_name} ({value_column.upper()})', hovertemplate=f'Time: %{{x}}
{value_column.upper()}: %{{y:.2f}}
Agent: {agent_name}', visible=is_visible ) ) logger.info(f"Added {value_column} data points for agent {agent_name} with {len(x_values)} points (visible: {is_visible})") def _add_moving_average_line(self, fig: go.Figure, avg_data: pd.DataFrame, value_column: str, line_name: str, color: str, width: int = 2, hover_data: List[str] = None) -> None: """Add a moving average line to the chart.""" if avg_data.empty or 'moving_avg' not in avg_data.columns: return # Filter out NaT values before processing - be more aggressive clean_data = avg_data.copy() # Remove rows with NaT timestamps more comprehensively clean_data = clean_data.dropna(subset=['timestamp']) clean_data = clean_data[clean_data['timestamp'].notna()] clean_data = clean_data[~clean_data['timestamp'].isnull()] # Additional check for pandas NaT specifically if hasattr(pd, 'NaT'): clean_data = clean_data[clean_data['timestamp'] != pd.NaT] # Also filter out NaN moving averages clean_data = clean_data.dropna(subset=['moving_avg']) clean_data = clean_data[clean_data['moving_avg'].notna()] if clean_data.empty: logger.warning("No valid timestamps found for " + str(line_name)) return x_values = clean_data['timestamp'].tolist() y_values = clean_data['moving_avg'].tolist() # Create hover text without any f-strings to avoid strftime issues if hover_data: hover_text = hover_data else: hover_text = [] for _, row in clean_data.iterrows(): try: # Convert timestamp to string safely ts = row['timestamp'] # More comprehensive NaT checking if pd.isna(ts) or pd.isnull(ts) or (hasattr(pd, 'NaT') and ts is pd.NaT): time_str = "Invalid Date" elif hasattr(ts, 'strftime'): try: time_str = ts.strftime('%Y-%m-%d %H:%M:%S') except (ValueError, TypeError): time_str = str(ts) else: time_str = str(ts) # Build hover text using string concatenation only hover_line = "Time: " + time_str + "
" # Safely format moving average value try: avg_val = row['moving_avg'] if pd.isna(avg_val) or pd.isnull(avg_val): avg_str = "N/A" else: avg_str = "{:.2f}".format(float(avg_val)) except (ValueError, TypeError): avg_str = "N/A" hover_line += "Avg " + value_column.upper() + " (7d window): " + avg_str hover_text.append(hover_line) except Exception as e: logger.warning("Error formatting timestamp for hover text: " + str(e)) # Fallback hover text hover_line = "Time: Invalid Date
" hover_line += "Avg " + value_column.upper() + " (3d window): N/A" hover_text.append(hover_line) fig.add_trace( go.Scatter( x=x_values, y=y_values, mode='lines', line=dict(color=color, width=width, shape='spline', smoothing=1.3), name=line_name, hovertext=hover_text, hoverinfo='text', visible=True ) ) logger.info("Added moving average line '" + str(line_name) + "' with " + str(len(x_values)) + " points") def _filter_outliers(self, df: pd.DataFrame, column: str) -> pd.DataFrame: """Filter outliers from the data - DISABLED: Return data unchanged.""" # Outlier filtering disabled - return original data logger.info(f"Outlier filtering disabled for {column} column - returning all data") return df def _calculate_moving_average(self, df: pd.DataFrame, value_column: str) -> pd.DataFrame: """Calculate moving average for the data.""" return self.data_processor.calculate_moving_average(df, value_column) def _save_chart(self, fig: go.Figure, html_filename: str, png_filename: str = None) -> None: """Save the chart to HTML and optionally PNG.""" try: fig.write_html(html_filename, include_plotlyjs='cdn', full_html=False) logger.info(f"Chart saved to {html_filename}") if png_filename: try: fig.write_image(png_filename) logger.info(f"Chart also saved to {png_filename}") except Exception as e: logger.error(f"Error saving PNG image: {e}") logger.info(f"Chart saved to {html_filename} only") except Exception as e: logger.error(f"Error saving chart: {e}") def generate_visualization(self, df: pd.DataFrame, **kwargs) -> Tuple[go.Figure, Optional[str]]: """Generate the complete visualization including chart and CSV export.""" if df.empty: logger.info("No data available for visualization.") fig = self._create_empty_chart("No data available") return fig, None # Create the chart fig = self.create_chart(df, **kwargs) # Save to CSV csv_filename = kwargs.get('csv_filename') if csv_filename: csv_path = self.data_processor.save_to_csv(df, csv_filename) else: csv_path = None return fig, csv_path def _create_empty_chart(self, message: str) -> go.Figure: """Create an empty chart with a message.""" fig = go.Figure() fig.add_annotation( x=0.5, y=0.5, text=message, font=dict(size=20), showarrow=False ) fig.update_layout( xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False) ) return fig def _get_color_map(self, agents: List[str]) -> Dict[str, str]: """Generate a color map for agents.""" colors = px.colors.qualitative.Plotly[:len(agents)] return {agent: colors[i % len(colors)] for i, agent in enumerate(agents)}