import requests import pandas as pd import gradio as gr import plotly.graph_objects as go import plotly.express as px from datetime import datetime, timedelta import json # Commenting out blockchain-related imports that cause loading issues # from web3 import Web3 import os import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates import random # Comment out the import for now and replace with dummy functions # from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations # Import APR visualization functions from the new module from apr_visualization import generate_apr_visualizations # Create dummy functions for the commented out imports def create_transcation_visualizations(): """Dummy implementation that returns a placeholder graph""" fig = go.Figure() fig.add_annotation( text="Blockchain data loading disabled - placeholder visualization", x=0.5, y=0.5, xref="paper", yref="paper", showarrow=False, font=dict(size=20) ) return fig def create_active_agents_visualizations(): """Dummy implementation that returns a placeholder graph""" fig = go.Figure() fig.add_annotation( text="Blockchain data loading disabled - placeholder visualization", x=0.5, y=0.5, xref="paper", yref="paper", showarrow=False, font=dict(size=20) ) return fig # Comment out the blockchain connection code """ # Load environment variables from .env file # RPC URLs OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL') MODE_RPC_URL = os.getenv('MODE_RPC_URL') # Initialize Web3 instances web3_instances = { 'optimism': Web3(Web3.HTTPProvider(OPTIMISM_RPC_URL)), 'mode': Web3(Web3.HTTPProvider(MODE_RPC_URL)) } # Contract addresses for service registries contract_addresses = { 'optimism': '0x3d77596beb0f130a4415df3D2D8232B3d3D31e44', 'mode': '0x3C1fF68f5aa342D296d4DEe4Bb1cACCA912D95fE' } # Load the ABI from the provided JSON file with open('./contracts/service_registry_abi.json', 'r') as abi_file: contract_abi = json.load(abi_file) # Create the contract instances service_registries = { chain_name: web3.eth.contract(address=contract_addresses[chain_name], abi=contract_abi) for chain_name, web3 in web3_instances.items() } # Check if connections are successful for chain_name, web3_instance in web3_instances.items(): if not web3_instance.is_connected(): raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.") else: print(f"Successfully connected to the {chain_name.capitalize()} network.") """ # Dummy blockchain functions to replace the commented ones def get_transfers(integrator: str, wallet: str) -> str: """Dummy function that returns an empty result""" return {"transfers": []} def fetch_and_aggregate_transactions(): """Dummy function that returns empty data""" return [], {} # Function to parse the transaction data and prepare it for visualization def process_transactions_and_agents(data): """Dummy function that returns empty dataframes""" df_transactions = pd.DataFrame() df_agents = pd.DataFrame(columns=['date', 'agent_count']) df_agents_weekly = pd.DataFrame() return df_transactions, df_agents, df_agents_weekly # Function to create visualizations based on the metrics def create_visualizations(): """ # Commenting out the original visualization code temporarily for debugging transactions_data = fetch_and_aggregate_transactions() df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data) # Fetch daily value locked data df_tvl = pd.read_csv('daily_value_locked.csv') # Calculate total value locked per chain per day df_tvl["total_value_locked_usd"] = df_tvl["amount0_usd"] + df_tvl["amount1_usd"] df_tvl_daily = df_tvl.groupby(["date", "chain_name"])["total_value_locked_usd"].sum().reset_index() df_tvl_daily['date'] = pd.to_datetime(df_tvl_daily['date']) # Filter out dates with zero total value locked df_tvl_daily = df_tvl_daily[df_tvl_daily["total_value_locked_usd"] > 0] chain_name_map = { "mode": "Mode", "base": "Base", "ethereum": "Ethereum", "optimism": "Optimism" } df_tvl_daily["chain_name"] = df_tvl_daily["chain_name"].map(chain_name_map) # Plot total value locked fig_tvl = px.bar( df_tvl_daily, x="date", y="total_value_locked_usd", color="chain_name", opacity=0.7, title="Total Volume Invested in Pools in Different Chains Daily", labels={"date": "Date","chain_name": "Transaction Chain", "total_value_locked_usd": "Total Volume Invested (USD)"}, barmode='stack', color_discrete_map={ "Mode": "orange", "Base": "purple", "Ethereum": "darkgreen", "Optimism": "blue" } ) fig_tvl.update_layout( xaxis_title="Date", yaxis=dict(tickmode='linear', tick0=0, dtick=4), xaxis=dict( tickmode='array', tickvals=df_tvl_daily['date'], ticktext=df_tvl_daily['date'].dt.strftime('%b %d'), tickangle=-45, ), bargap=0.6, # Increase gap between bar groups (0-1) bargroupgap=0.1, # Decrease gap between bars in a group (0-1) height=600, width=1200, # Specify width to prevent bars from being too wide showlegend=True, template='plotly_white' ) fig_tvl.update_xaxes(tickformat="%b %d") chain_name_map = { 10: "Optimism", 8453: "Base", 1: "Ethereum", 34443: "Mode" } df_transactions["sending_chain"] = df_transactions["sending_chain"].map(chain_name_map) df_transactions["receiving_chain"] = df_transactions["receiving_chain"].map(chain_name_map) df_transactions["sending_chain"] = df_transactions["sending_chain"].astype(str) df_transactions["receiving_chain"] = df_transactions["receiving_chain"].astype(str) df_transactions['date'] = pd.to_datetime(df_transactions['date']) df_transactions["is_swap"] = df_transactions.apply(lambda x: x["sending_chain"] == x["receiving_chain"], axis=1) swaps_per_chain = df_transactions[df_transactions["is_swap"]].groupby(["date", "sending_chain"]).size().reset_index(name="swap_count") fig_swaps_chain = px.bar( swaps_per_chain, x="date", y="swap_count", color="sending_chain", title="Chain Daily Activity: Swaps", labels={"sending_chain": "Transaction Chain", "swap_count": "Daily Swap Nr"}, barmode="stack", opacity=0.7, color_discrete_map={ "Optimism": "blue", "Ethereum": "darkgreen", "Base": "purple", "Mode": "orange" } ) fig_swaps_chain.update_layout( xaxis_title="Date", yaxis_title="Daily Swap Count", yaxis=dict(tickmode='linear', tick0=0, dtick=1), xaxis=dict( tickmode='array', tickvals=[d for d in swaps_per_chain['date']], ticktext=[d.strftime('%m-%d') for d in swaps_per_chain['date']], tickangle=-45, ), bargap=0.6, bargroupgap=0.1, height=600, width=1200, margin=dict(l=50, r=50, t=50, b=50), showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="right", x=0.99 ), template='plotly_white' ) fig_swaps_chain.update_xaxes(tickformat="%m-%d") df_transactions["is_bridge"] = df_transactions.apply(lambda x: x["sending_chain"] != x["receiving_chain"], axis=1) bridges_per_chain = df_transactions[df_transactions["is_bridge"]].groupby(["date", "sending_chain"]).size().reset_index(name="bridge_count") fig_bridges_chain = px.bar( bridges_per_chain, x="date", y="bridge_count", color="sending_chain", title="Chain Daily Activity: Bridges", labels={"sending_chain": "Transaction Chain", "bridge_count": "Daily Bridge Nr"}, barmode="stack", opacity=0.7, color_discrete_map={ "Optimism": "blue", "Ethereum": "darkgreen", "Base": "purple", "Mode": "orange" } ) fig_bridges_chain.update_layout( xaxis_title="Date", yaxis_title="Daily Bridge Count", yaxis=dict(tickmode='linear', tick0=0, dtick=1), xaxis=dict( tickmode='array', tickvals=[d for d in bridges_per_chain['date']], ticktext=[d.strftime('%m-%d') for d in bridges_per_chain['date']], tickangle=-45, ), bargap=0.6, bargroupgap=0.1, height=600, width=1200, margin=dict(l=50, r=50, t=50, b=50), showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="right", x=0.99 ), template='plotly_white' ) fig_bridges_chain.update_xaxes(tickformat="%m-%d") df_agents['date'] = pd.to_datetime(df_agents['date']) daily_agents_df = df_agents.groupby('date').agg({'agent_count': 'sum'}).reset_index() daily_agents_df.rename(columns={'agent_count': 'daily_agent_count'}, inplace=True) # Sort by date to ensure proper running total calculation daily_agents_df = daily_agents_df.sort_values('date') # Create week column daily_agents_df['week'] = daily_agents_df['date'].dt.to_period('W').apply(lambda r: r.start_time) # Calculate running total within each week daily_agents_df['running_weekly_total'] = daily_agents_df.groupby('week')['daily_agent_count'].cumsum() # Create final merged dataframe weekly_merged_df = daily_agents_df.copy() adjustment_date = pd.to_datetime('2024-11-15') weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'daily_agent_count'] -= 1 weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'running_weekly_total'] -= 1 fig_agents_registered = go.Figure(data=[ go.Bar( name='Daily nr of Registered Agents', x=weekly_merged_df['date'].dt.strftime("%b %d"), y=weekly_merged_df['daily_agent_count'], opacity=0.7, marker_color='blue' ), go.Bar( name='Weekly Nr of Registered Agents', x=weekly_merged_df['date'].dt.strftime("%b %d"), y=weekly_merged_df['running_weekly_total'], opacity=0.7, marker_color='purple' ) ]) fig_agents_registered.update_layout( xaxis_title='Date', yaxis_title='Number of Agents', title="Nr of Agents Registered", barmode='group', yaxis=dict(tickmode='linear', tick0=0, dtick=1), xaxis=dict( categoryorder='array', categoryarray=weekly_merged_df['date'].dt.strftime("%b %d"), tickangle=-45 ), bargap=0.3, height=600, width=1200, showlegend=True, legend=dict( yanchor="top", xanchor="right", ), template='plotly_white', ) return fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl """ # Placeholder figures for testing fig_swaps_chain = go.Figure() fig_swaps_chain.add_annotation( text="Blockchain data loading disabled - placeholder visualization", x=0.5, y=0.5, xref="paper", yref="paper", showarrow=False, font=dict(size=20) ) fig_bridges_chain = go.Figure() fig_bridges_chain.add_annotation( text="Blockchain data loading disabled - placeholder visualization", x=0.5, y=0.5, xref="paper", yref="paper", showarrow=False, font=dict(size=20) ) fig_agents_registered = go.Figure() fig_agents_registered.add_annotation( text="Blockchain data loading disabled - placeholder visualization", x=0.5, y=0.5, xref="paper", yref="paper", showarrow=False, font=dict(size=20) ) fig_tvl = go.Figure() fig_tvl.add_annotation( text="Blockchain data loading disabled - placeholder visualization", x=0.5, y=0.5, xref="paper", yref="paper", showarrow=False, font=dict(size=20) ) return fig_swaps_chain, fig_bridges_chain, fig_agents_registered, fig_tvl # Gradio interface def dashboard(): with gr.Blocks() as demo: gr.Markdown("# Valory APR Metrics") # APR Metrics tab - the only tab with gr.Tab("APR Metrics"): with gr.Column(): refresh_btn = gr.Button("Refresh APR Data") # Create containers for plotly figures per_agent_graph = gr.Plot(label="APR Per Agent") combined_graph = gr.Plot(label="Combined APR (All Agents)") # Function to update both graphs def update_apr_graphs(): # Generate visualizations and get figure objects directly per_agent_fig, combined_fig, _ = generate_apr_visualizations() return per_agent_fig, combined_fig # Set up the button click event refresh_btn.click( fn=update_apr_graphs, inputs=[], outputs=[per_agent_graph, combined_graph] ) # Initialize the graphs on load # We'll use placeholder figures initially import plotly.graph_objects as go placeholder_fig = go.Figure() placeholder_fig.add_annotation( text="Click 'Refresh APR Data' to load APR graphs", x=0.5, y=0.5, showarrow=False, font=dict(size=15) ) per_agent_graph.value = placeholder_fig combined_graph.value = placeholder_fig return demo # Launch the dashboard if __name__ == "__main__": dashboard().launch()