File size: 20,838 Bytes
e2483e1
 
6d1c646
 
 
b9c8b67
6d1c646
e2483e1
99c38a1
 
7a45667
 
f31132a
42514f7
929ee61
500ea0f
929ee61
 
6db6faf
 
 
 
1f895f9
a3fadc8
e2483e1
929ee61
e2483e1
35f470e
 
e2483e1
f740333
 
6db6faf
 
f740333
 
5d93d9f
 
 
 
aa136ff
5d93d9f
 
e2483e1
a035e35
 
 
 
e2483e1
b4a0040
1ce0afe
5260669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89e7629
4141ee5
b9c8b67
 
 
 
 
 
99c38a1
 
 
b9c8b67
 
 
 
99c38a1
b9c8b67
 
99c38a1
6d1c646
 
 
 
 
 
 
 
 
 
 
8e882f5
6d1c646
 
 
 
 
8e882f5
 
6d1c646
8e882f5
 
6d1c646
 
8e882f5
 
551b52f
6d1c646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b25cb
0c1f12d
 
 
ba0ca62
 
 
 
 
 
 
6d1c646
7a45667
e2483e1
37b25cb
1bda8f5
c60bfff
d9a2b7f
50faa2d
 
99c38a1
5d93d9f
 
 
 
b9cf4a4
91c78da
 
 
7a784da
91c78da
 
ba0ca62
 
 
 
 
 
 
 
d9a2b7f
 
ba0ca62
 
 
 
 
 
 
 
d637ff8
1bda8f5
93eadbc
 
e2483e1
500ea0f
a035e35
ba0ca62
a035e35
e2483e1
35f470e
99c38a1
472bae0
 
e2483e1
 
99c38a1
 
 
e2483e1
 
b4a0040
6d293e0
 
 
42514f7
6d293e0
 
 
 
42514f7
b4a0040
58ed767
b4a0040
58ed767
42514f7
58ed767
42514f7
 
 
 
58ed767
42514f7
58ed767
42514f7
58ed767
42514f7
 
6d293e0
fdea2e1
 
 
 
 
 
 
6d293e0
42514f7
6d293e0
 
 
6db6faf
 
6d293e0
a3fadc8
6d293e0
a3fadc8
 
 
 
 
 
4f7c20c
6d293e0
 
 
fdea2e1
 
6d293e0
42514f7
 
 
58ed767
 
 
42514f7
1bda8f5
42514f7
 
 
 
 
 
 
1bda8f5
42514f7
 
1bda8f5
42514f7
 
4f7c20c
42514f7
1bda8f5
42514f7
 
 
58ed767
42514f7
 
 
1bda8f5
42514f7
1bda8f5
 
42514f7
 
58ed767
42514f7
 
58ed767
42514f7
 
1bda8f5
42514f7
 
 
 
 
 
 
1bda8f5
42514f7
 
58ed767
42514f7
 
4f7c20c
42514f7
 
1bda8f5
42514f7
 
58ed767
42514f7
1bda8f5
 
 
 
 
 
 
 
ec79d1d
 
 
4f7c20c
ec79d1d
 
 
 
 
 
 
1bda8f5
ec79d1d
 
 
 
 
 
 
 
4f7c20c
 
 
ec79d1d
 
 
 
1bda8f5
 
 
ec79d1d
1bda8f5
ec79d1d
 
 
 
1bda8f5
42514f7
500ea0f
 
317726a
500ea0f
1bda8f5
58ed767
500ea0f
 
 
317726a
500ea0f
58ed767
500ea0f
 
 
317726a
500ea0f
 
 
 
e2483e1
 
1ce0afe
e2483e1
 
 
1ce0afe
35f470e
6db6faf
e2483e1
 
 
6db6faf
35f470e
 
6db6faf
e2483e1
 
 
35f470e
 
e2483e1
 
 
 
99c38a1
 
e2483e1
 
 
 
 
 
 
 
1ce0afe
99c38a1
e2483e1
 
99c38a1
e2483e1
 
 
35f470e
 
 
 
e2483e1
 
 
35f470e
 
 
e2483e1
 
 
99c38a1
 
e2483e1
 
 
 
 
7724f8b
5077b81
 
28ad8cf
f740333
5077b81
 
 
e2483e1
5077b81
6db6faf
f740333
d9a2b7f
28ad8cf
b0a6f33
 
 
 
f740333
5077b81
a66535a
5077b81
d9a2b7f
6db6faf
d9a2b7f
5d93d9f
 
 
 
96216c5
5d93d9f
 
 
 
694296b
5d93d9f
 
 
 
aa136ff
5d93d9f
e2483e1
 
1ce0afe
e2483e1
a035e35
 
 
e2483e1
1ce0afe
e2483e1
 
99c38a1
e2483e1
 
 
a035e35
f28c155
e2483e1
 
 
a035e35
f28c155
a035e35
e2483e1
 
99c38a1
e2483e1
 
 
 
7724f8b
e2483e1
 
1ce0afe
e2483e1
 
a035e35
 
 
 
 
e2483e1
 
 
99c38a1
 
e2483e1
 
a035e35
 
e2483e1
 
 
a035e35
 
 
e2483e1
99c38a1
 
 
 
 
 
e2483e1
 
 
 
7724f8b
e2483e1
 
 
7724f8b
e2483e1
 
 
 
 
1ce0afe
 
 
e2483e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
import gradio as gr
import pandas as pd
import gzip
import shutil
import os
import logging
from huggingface_hub import hf_hub_download
from tabs.trades import (
    prepare_trades,
    get_overall_trades,
    get_overall_by_market_trades,
    get_overall_winning_by_market_trades,
    integrated_plot_trades_per_market_by_week_v2,
    integrated_plot_winning_trades_per_market_by_week_v2,
)
from tabs.staking import plot_staking_trades_per_market_by_week

from tabs.metrics import (
    trade_metric_choices,
    tool_metric_choices,
    default_trade_metric,
    default_tool_metric,
    plot_trade_metrics,
    get_trade_metrics_text,
)

from tabs.tool_win import (
    integrated_plot_tool_winnings_overall_per_market_by_week,
    integrated_tool_winnings_by_tool_per_market,
)

from tabs.tool_accuracy import (
    plot_tools_weighted_accuracy_rotated_graph,
    plot_tools_accuracy_rotated_graph,
    compute_weighted_accuracy,
)

from tabs.invalid_markets import (
    plot_daily_dist_invalid_trades,
    plot_top_invalid_markets,
    plotly_daily_nr_invalid_markets,
)

from tabs.error import (
    plot_week_error_data_by_market,
    plot_error_data_by_market,
    get_error_data_overall_by_market,
    plot_tool_error_data_by_market,
)

from tabs.about import about_olas_predict, about_this_dashboard

INC_TOOLS = [
    "prediction-online",
    "prediction-offline",
    "claude-prediction-online",
    "claude-prediction-offline",
    "prediction-offline-sme",
    "prediction-online-sme",
    "prediction-request-rag",
    "prediction-request-reasoning",
    "prediction-url-cot-claude",
    "prediction-request-rag-claude",
    "prediction-request-reasoning-claude",
    "superforcaster",
]


def get_logger():
    logger = logging.getLogger(__name__)
    logger.setLevel(logging.DEBUG)
    # stream handler and formatter
    stream_handler = logging.StreamHandler()
    stream_handler.setLevel(logging.DEBUG)
    formatter = logging.Formatter(
        "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
    )
    stream_handler.setFormatter(formatter)
    logger.addHandler(stream_handler)
    return logger


logger = get_logger()


def load_all_data():
    # error by markets
    errors_df = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="error_by_markets.parquet",
        repo_type="dataset",
    )

    df1 = pd.read_parquet(errors_df)

    # all trades profitability
    gz_file_path_trades = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="all_trades_profitability.parquet.gz",
        repo_type="dataset",
    )

    parquet_file_path_trades = gz_file_path_trades.replace(".gz", "")
    parquet_file_path_trades = parquet_file_path_trades.replace("all", "")

    with gzip.open(gz_file_path_trades, "rb") as f_in:
        with open(parquet_file_path_trades, "wb") as f_out:
            shutil.copyfileobj(f_in, f_out)

    df2 = pd.read_parquet(parquet_file_path_trades)

    # os.remove(parquet_file_path)

    # tools_accuracy
    tools_accuracy = pd.read_csv(
        "https://huggingface.co/datasets/valory/Olas-predict-dataset/raw/main/tools_accuracy.csv",
        sep=",",
    )
    df3 = pd.DataFrame(tools_accuracy)

    # invalid trades
    invalid_df = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="invalid_trades.parquet",
        repo_type="dataset",
    )

    df4 = pd.read_parquet(invalid_df)

    # unknown traders
    unknown_df = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="unknown_traders.parquet",
        repo_type="dataset",
    )

    df5 = pd.read_parquet(unknown_df)

    # winning_df.parquet
    winning_df = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="winning_df.parquet",
        repo_type="dataset",
    )

    df6 = pd.read_parquet(winning_df)
    return df1, df2, df3, df4, df5, df6


def prepare_data():
    """
    Prepare the data for the dashboard
    """
    (
        error_by_markets,
        trades_df,
        tools_accuracy_info,
        invalid_trades,
        unknown_trades,
        winning_df,
    ) = load_all_data()
    print(trades_df.info())

    trades_df = prepare_trades(trades_df)
    unknown_trades = prepare_trades(unknown_trades)

    tools_accuracy_info = compute_weighted_accuracy(tools_accuracy_info)
    print("weighted accuracy info")
    print(tools_accuracy_info.head())

    invalid_trades["creation_timestamp"] = pd.to_datetime(
        invalid_trades["creation_timestamp"]
    )
    invalid_trades["creation_date"] = invalid_trades["creation_timestamp"].dt.date

    # discovering outliers for ROI
    outliers = trades_df.loc[trades_df["roi"] >= 1000]
    if len(outliers) > 0:
        outliers.to_parquet("./data/outliers.parquet")
        trades_df = trades_df.loc[trades_df["roi"] < 1000]

    return (
        error_by_markets,
        trades_df,
        tools_accuracy_info,
        invalid_trades,
        unknown_trades,
        winning_df,
    )


(
    error_by_markets,
    trades_df,
    tools_accuracy_info,
    invalid_trades,
    unknown_trades,
    winning_df,
) = prepare_data()
trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
unknown_trades = unknown_trades.sort_values(by="creation_timestamp", ascending=True)
print("head of invalid trades")
print(invalid_trades.head())
demo = gr.Blocks()

# preparing data for the errors

error_overall_by_markets = get_error_data_overall_by_market(error_df=error_by_markets)

# preparing data for the trades graph
trades_count_df = get_overall_trades(trades_df=trades_df)
trades_by_market = get_overall_by_market_trades(trades_df=trades_df)
winning_trades_by_market = get_overall_winning_by_market_trades(trades_df=trades_df)
with demo:
    gr.HTML("<h1>Olas Predict Actual Performance</h1>")
    gr.Markdown(
        "This app shows the actual performance of Olas Predict tools on the live market."
    )

    with gr.Tabs():
        with gr.TabItem("πŸ”₯ Weekly Trades Dashboard"):
            with gr.Row():
                gr.Markdown("# Trend of weekly trades")
            with gr.Row():
                trades_by_week = integrated_plot_trades_per_market_by_week_v2(
                    trades_df=trades_df
                )

            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown(
                        "# Weekly percentage of winning for trades based on 🌊 Olas traders"
                    )
                    olas_winning_trades = (
                        integrated_plot_winning_trades_per_market_by_week_v2(
                            trades_df=trades_df, trader_filter="Olas"
                        )
                    )
                with gr.Column(scale=1):
                    gr.Markdown(
                        "# Weekly percentage of winning for trades based on non-Olas traders"
                    )
                    non_Olas_winning_trades = (
                        integrated_plot_winning_trades_per_market_by_week_v2(
                            trades_df=trades_df, trader_filter="non_Olas"
                        )
                    )

            def update_trade_details(trade_detail, trade_details_plot):
                new_plot = plot_trade_metrics(
                    metric_name=trade_detail,
                    trades_df=trades_df,
                )
                return new_plot

            with gr.Row():
                gr.Markdown("# βš–οΈ Weekly trading metrics for all trades")
            with gr.Row():
                trade_details_selector = gr.Dropdown(
                    label="Select a trade metric",
                    choices=trade_metric_choices,
                    value=default_trade_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    trade_details_plot = plot_trade_metrics(
                        metric_name=default_trade_metric,
                        trades_df=trades_df,
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_trade_metrics_text(trader_type=None)

            trade_details_selector.change(
                update_trade_details,
                inputs=[trade_details_selector, trade_details_plot],
                outputs=[trade_details_plot],
            )

            # Agentic traders graph
            with gr.Row():
                gr.Markdown(
                    "# Weekly trading metrics for trades coming from 🌊 Olas traders"
                )
            with gr.Row():
                trade_o_details_selector = gr.Dropdown(
                    label="Select a trade metric",
                    choices=trade_metric_choices,
                    value=default_trade_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    trade_o_details_plot = plot_trade_metrics(
                        metric_name=default_trade_metric,
                        trades_df=trades_df,
                        trader_filter="Olas",
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_trade_metrics_text(trader_type="Olas")

            def update_a_trade_details(trade_detail, trade_o_details_plot):
                new_a_plot = plot_trade_metrics(
                    metric_name=trade_detail,
                    trades_df=trades_df,
                    trader_filter="Olas",
                )
                return new_a_plot

            trade_o_details_selector.change(
                update_a_trade_details,
                inputs=[trade_o_details_selector, trade_o_details_plot],
                outputs=[trade_o_details_plot],
            )

            # Non-Olasic traders graph
            with gr.Row():
                gr.Markdown(
                    "# Weekly trading metrics for trades coming from Non-Olas traders"
                )
            with gr.Row():
                trade_no_details_selector = gr.Dropdown(
                    label="Select a trade metric",
                    choices=trade_metric_choices,
                    value=default_trade_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    trade_no_details_plot = plot_trade_metrics(
                        metric_name=default_trade_metric,
                        trades_df=trades_df,
                        trader_filter="non_Olas",
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_trade_metrics_text("non_Olas")

            def update_na_trade_details(trade_detail, trade_details_plot):
                new_no_plot = plot_trade_metrics(
                    metric_name=trade_detail,
                    trades_df=trades_df,
                    trader_filter="non_Olas",
                )
                return new_no_plot

            trade_no_details_selector.change(
                update_na_trade_details,
                inputs=[trade_no_details_selector, trade_no_details_plot],
                outputs=[trade_no_details_plot],
            )
            # Unknown traders graph
            if len(unknown_trades) > 0:
                with gr.Row():
                    gr.Markdown(
                        "# Weekly trading metrics for trades coming from Unclassified traders"
                    )
                with gr.Row():
                    trade_u_details_selector = gr.Dropdown(
                        label="Select a trade metric",
                        choices=trade_metric_choices,
                        value=default_trade_metric,
                    )

                with gr.Row():
                    with gr.Column(scale=3):
                        trade_u_details_plot = plot_trade_metrics(
                            metric_name=default_trade_metric,
                            trades_df=unknown_trades,
                            trader_filter="all",
                        )
                    with gr.Column(scale=1):
                        trade_details_text = get_trade_metrics_text(
                            trader_type="unclassified"
                        )

                def update_na_trade_details(trade_detail, trade_u_details_plot):
                    new_u_plot = plot_trade_metrics(
                        metric_name=trade_detail,
                        trades_df=unknown_trades,
                        trader_filter="all",
                    )
                    return new_u_plot

                trade_u_details_selector.change(
                    update_na_trade_details,
                    inputs=[trade_u_details_selector, trade_u_details_plot],
                    outputs=[trade_u_details_plot],
                )

        with gr.TabItem("πŸ”’ Staking traders"):
            with gr.Row():
                gr.Markdown("# Trades conducted at the Pearl markets")
            with gr.Row():
                print("Calling plot staking with pearl")
                staking_pearl_trades_by_week = plot_staking_trades_per_market_by_week(
                    trades_df=trades_df, market_creator="pearl"
                )
            with gr.Row():
                gr.Markdown("# Trades conducted at the Quickstart markets")
            with gr.Row():
                staking_qs_trades_by_week = plot_staking_trades_per_market_by_week(
                    trades_df=trades_df, market_creator="quickstart"
                )
            with gr.Row():
                gr.Markdown("# Trades conducted irrespective of the market")
            with gr.Row():
                staking_trades_by_week = plot_staking_trades_per_market_by_week(
                    trades_df=trades_df, market_creator="all"
                )
        with gr.TabItem("πŸš€ Tool Winning Dashboard"):
            with gr.Row():
                gr.Markdown("# All tools winning performance")

            with gr.Row():
                winning_selector = gr.Dropdown(
                    label="Select the tool metric",
                    choices=list(tool_metric_choices.keys()),
                    value=default_tool_metric,
                )

            with gr.Row():
                # plot_tool_metrics
                winning_plot = integrated_plot_tool_winnings_overall_per_market_by_week(
                    winning_df=winning_df,
                    winning_selector=default_tool_metric,
                )

            def update_tool_winnings_overall_plot(winning_selector):
                return integrated_plot_tool_winnings_overall_per_market_by_week(
                    winning_df=winning_df, winning_selector=winning_selector
                )

            winning_selector.change(
                update_tool_winnings_overall_plot,
                inputs=winning_selector,
                outputs=winning_plot,
            )

            with gr.Row():
                winning_selector
            with gr.Row():
                winning_plot

            with gr.Row():
                gr.Markdown("# Winning performance by each tool")

            with gr.Row():
                sel_tool = gr.Dropdown(
                    label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
                )

            with gr.Row():
                tool_winnings_by_tool_plot = (
                    integrated_tool_winnings_by_tool_per_market(
                        wins_df=winning_df, tool=INC_TOOLS[0]
                    )
                )

            def update_tool_winnings_by_tool_plot(tool):
                return integrated_tool_winnings_by_tool_per_market(
                    wins_df=winning_df, tool=tool
                )

            sel_tool.change(
                update_tool_winnings_by_tool_plot,
                inputs=sel_tool,
                outputs=tool_winnings_by_tool_plot,
            )

            with gr.Row():
                sel_tool
            with gr.Row():
                tool_winnings_by_tool_plot
        with gr.TabItem("🎯 Tool Accuracy Dashboard"):
            with gr.Row():
                gr.Markdown("# Tools accuracy ranking")
            with gr.Row():
                gr.Markdown(
                    "The data used for this metric is from the past two months. This accuracy is computed based on right answers from the total requests received."
                )

            with gr.Row():
                _ = plot_tools_accuracy_rotated_graph(tools_accuracy_info)

            with gr.Row():
                gr.Markdown("# Weighted accuracy ranking per tool")
            with gr.Row():
                gr.Markdown(
                    "This metric is an approximation to the real metric used by the trader since some parameters are only dynamically generated."
                )
            with gr.Row():
                gr.Markdown(
                    "The data used for this metric is from the past two months. This metric is computed using both the tool accuracy and the volume of requests received by the tool. The minimum value of this custom metric is 0 and the maximum value is 1. The higher the better is the tool."
                )
            with gr.Row():
                _ = plot_tools_weighted_accuracy_rotated_graph(tools_accuracy_info)

        with gr.TabItem("β›” Invalid Markets Dashboard"):
            with gr.Row():
                gr.Markdown("# Daily distribution of invalid trades")
            with gr.Row():
                daily_trades = plot_daily_dist_invalid_trades(invalid_trades)

            with gr.Row():
                gr.Markdown("# Top markets with invalid trades")
            with gr.Row():
                top_invalid_markets = plot_top_invalid_markets(invalid_trades)

            with gr.Row():
                gr.Markdown("# Daily distribution of invalid markets")
            with gr.Row():
                invalid_markets = plotly_daily_nr_invalid_markets(invalid_trades)

        with gr.TabItem("πŸ₯ Tool Error Dashboard"):
            with gr.Row():
                gr.Markdown("# All tools errors")
            with gr.Row():
                error_overall_plot = plot_error_data_by_market(
                    error_all_df=error_overall_by_markets
                )
            with gr.Row():
                gr.Markdown("# Error percentage per tool")
            with gr.Row():
                sel_tool = gr.Dropdown(
                    label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
                )

            with gr.Row():
                tool_error_plot = plot_tool_error_data_by_market(
                    error_raw=error_by_markets, tool=INC_TOOLS[0]
                )

            def update_tool_error_plot(tool):
                return plot_tool_error_data_by_market(
                    error_raw=error_by_markets, tool=tool
                )

            sel_tool.change(
                update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
            )
            with gr.Row():
                sel_tool
            with gr.Row():
                tool_error_plot

            with gr.Row():
                gr.Markdown("# Tools distribution of errors per week")

            with gr.Row():
                choices = (
                    error_overall_by_markets["request_month_year_week"]
                    .unique()
                    .tolist()
                )
                # sort the choices by the latest week to be on the top
                choices = sorted(choices)
                sel_week = gr.Dropdown(
                    label="Select a week", choices=choices, value=choices[-1]
                )

            with gr.Row():
                week_error_plot = plot_week_error_data_by_market(
                    error_df=error_by_markets, week=choices[-1]
                )

            def update_week_error_plot(selected_week):
                return plot_week_error_data_by_market(
                    error_df=error_by_markets, week=selected_week
                )

            sel_tool.change(
                update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
            )
            sel_week.change(
                update_week_error_plot, inputs=sel_week, outputs=week_error_plot
            )

            with gr.Row():
                sel_tool
            with gr.Row():
                tool_error_plot
            with gr.Row():
                sel_week
            with gr.Row():
                week_error_plot

        with gr.TabItem("ℹ️ About"):
            with gr.Accordion("About Olas Predict"):
                gr.Markdown(about_olas_predict)

            with gr.Accordion("About this dashboard"):
                gr.Markdown(about_this_dashboard)

demo.queue(default_concurrency_limit=40).launch()