File size: 2,346 Bytes
f740333
 
 
 
b0a6f33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f740333
 
 
 
b0a6f33
 
 
 
 
 
 
 
f740333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50faa2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import pandas as pd
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Tuple

VOLUME_FACTOR_REGULARIZATION = 0.5
UNSCALED_WEIGHTED_ACCURACY_INTERVAL = (-0.5, 100.5)
SCALED_WEIGHTED_ACCURACY_INTERVAL = (0, 1)


def scale_value(
    value: float,
    min_max_bounds: Tuple[float, float],
    scale_bounds: Tuple[float, float] = (0, 1),
) -> float:
    """Perform min-max scaling on a value."""
    min_, max_ = min_max_bounds
    current_range = max_ - min_
    # normalize between 0-1
    std = (value - min_) / current_range
    # scale between min_bound and max_bound
    min_bound, max_bound = scale_bounds
    target_range = max_bound - min_bound
    return std * target_range + min_bound


def get_weighted_accuracy(row, global_requests: int):
    """Function to compute the weighted accuracy of a tool"""
    return scale_value(
        (
            row["tool_accuracy"]
            + (row["total_requests"] / global_requests) * VOLUME_FACTOR_REGULARIZATION
        ),
        UNSCALED_WEIGHTED_ACCURACY_INTERVAL,
        SCALED_WEIGHTED_ACCURACY_INTERVAL,
    )


def compute_weighted_accuracy(tools_accuracy: pd.DataFrame):
    global_requests = tools_accuracy.total_requests.sum()
    tools_accuracy["weighted_accuracy"] = tools_accuracy.apply(
        lambda x: get_weighted_accuracy(x, global_requests), axis=1
    )
    return tools_accuracy


def plot_tools_accuracy_graph(tools_accuracy_info: pd.DataFrame):
    tools_accuracy_info = tools_accuracy_info.sort_values(
        by="tool_accuracy", ascending=False
    )
    plt.figure(figsize=(25, 10))
    plot = sns.barplot(
        tools_accuracy_info,
        x="tool_accuracy",
        y="tool",
        hue="tool",
        dodge=False,
        palette="viridis",
    )
    return gr.Plot(value=plot.get_figure())


def plot_tools_weighted_accuracy_graph(tools_accuracy_info: pd.DataFrame):
    tools_accuracy_info = tools_accuracy_info.sort_values(
        by="weighted_accuracy", ascending=False
    )
    # Create the Seaborn bar plot
    sns.set_theme(palette="viridis")
    plt.figure(figsize=(25, 10))
    plot = sns.barplot(
        tools_accuracy_info,
        x="weighted_accuracy",
        y="tool",
        hue="tool",
        dodge=False,
    )
    # Display the plot using gr.Plot
    return gr.Plot(value=plot.get_figure())