File size: 6,351 Bytes
929ee61
 
6145542
fdea2e1
 
929ee61
6db6faf
929ee61
 
 
 
 
 
 
35f470e
 
 
 
 
 
6db6faf
 
35f470e
929ee61
 
 
 
 
1f895f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c957a33
fdea2e1
c957a33
1f895f9
c957a33
fdea2e1
c957a33
 
 
 
 
 
 
 
 
fdea2e1
c957a33
 
1f895f9
 
 
 
6145542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f895f9
 
 
6145542
1f895f9
 
 
 
 
 
 
 
6145542
 
1f895f9
44a1003
1f895f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c957a33
1f895f9
 
 
 
 
a3fadc8
 
6145542
1f895f9
6145542
 
 
 
 
 
 
 
 
 
 
929ee61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6db6faf
 
73a0272
 
 
 
d6b08b0
73a0272
d6b08b0
73a0272
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import pandas as pd
import gradio as gr
import plotly.express as px
import gc
import matplotlib.pyplot as plt

trade_metric_choices = [
    "mech calls",
    "collateral amount",
    "earnings",
    "net earnings",
    "ROI",
]

tool_metric_choices = {
    "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %": "win_perc",
    "Total Weekly Inaccurate Nr of Mech Tool Responses": "losses",
    "Total Weekly Accurate Nr of Mech Tool Responses": "wins",
    "Total Weekly Nr of Mech Tool Requests": "total_request",
}

default_trade_metric = "ROI"
default_tool_metric = "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %"

HEIGHT = 600
WIDTH = 1000


def get_metrics(
    metric_name: str, column_name: str, market_creator: str, trades_df: pd.DataFrame
) -> pd.DataFrame:
    # this is to filter out the data before 2023-09-01
    trades_filtered = trades_df[trades_df["creation_timestamp"] > "2023-09-01"]
    if market_creator != "all":
        trades_filtered = trades_filtered.loc[
            trades_filtered["market_creator"] == market_creator
        ]

    trades_filtered = (
        trades_filtered.groupby("month_year_week", sort=False)[column_name]
        .quantile([0.25, 0.5, 0.75])
        .unstack()
    )
    # reformat the data as percentile, date, value
    trades_filtered = trades_filtered.melt(
        id_vars=["month_year_week"], var_name="percentile", value_name=metric_name
    )
    trades_filtered.columns = trades_filtered.columns.astype(str)
    trades_filtered.reset_index(inplace=True)
    trades_filtered.columns = [
        "month_year_week",
        "25th_percentile",
        "50th_percentile",
        "75th_percentile",
    ]
    # reformat the data as percentile, date, value
    trades_filtered = trades_filtered.melt(
        id_vars=["month_year_week"], var_name="percentile", value_name=metric_name
    )
    return trades_filtered


def get_boxplot_metrics(column_name: str, trades_df: pd.DataFrame) -> pd.DataFrame:
    trades_filtered = trades_df[
        ["creation_timestamp", "month_year_week", "market_creator", column_name]
    ]
    # adding the total
    trades_filtered_all = trades_df.copy(deep=True)
    trades_filtered_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat(
        [trades_filtered, trades_filtered_all], ignore_index=True
    )
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )
    gc.collect()
    return all_filtered_trades


def plot2_trade_details(
    metric_name: str, market_creator: str, trades_df: pd.DataFrame
) -> gr.Plot:
    """Plots the trade details for the given trade detail."""

    if metric_name == "mech calls":
        metric_name = "mech_calls"
        column_name = "num_mech_calls"
        yaxis_title = "Nr of mech calls per trade"
    elif metric_name == "ROI":
        column_name = "roi"
        yaxis_title = "ROI (net profit/cost)"
    elif metric_name == "collateral amount":
        metric_name = "collateral_amount"
        column_name = metric_name
        yaxis_title = "Collateral amount per trade (xDAI)"
    elif metric_name == "net earnings":
        metric_name = "net_earnings"
        column_name = metric_name
        yaxis_title = "Net profit per trade (xDAI)"
    else:  # earnings
        column_name = metric_name
        yaxis_title = "Gross profit per trade (xDAI)"

    trades_filtered = get_metrics(metric_name, column_name, market_creator, trades_df)
    fig = px.line(
        trades_filtered, x="month_year_week", y=metric_name, color="percentile"
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title=yaxis_title,
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(
        value=fig,
    )


def plot_trade_metrics(metric_name: str, trades_df: pd.DataFrame) -> gr.Plot:
    """Plots the trade metrics."""

    if metric_name == "mech calls":
        metric_name = "mech_calls"
        column_name = "num_mech_calls"
        yaxis_title = "Nr of mech calls per trade"
    elif metric_name == "ROI":
        column_name = "roi"
        yaxis_title = "ROI (net profit/cost)"
    elif metric_name == "collateral amount":
        metric_name = "collateral_amount"
        column_name = metric_name
        yaxis_title = "Collateral amount per trade (xDAI)"
    elif metric_name == "net earnings":
        metric_name = "net_earnings"
        column_name = metric_name
        yaxis_title = "Net profit per trade (xDAI)"
    else:  # earnings
        column_name = metric_name
        yaxis_title = "Gross profit per trade (xDAI)"

    trades_filtered = get_boxplot_metrics(column_name, trades_df)
    fig = px.box(
        trades_filtered,
        x="month_year_week",
        y=column_name,
        color="market_creator",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_traces(boxmean=True)
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title=yaxis_title,
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(
        value=fig,
    )


def plot_average_roi_per_market_by_week(trades_df: pd.DataFrame) -> gr.LinePlot:

    mean_roi_per_market_by_week = (
        trades_df.groupby(["market_creator", "month_year_week"])["roi"]
        .mean()
        .reset_index()
    )
    mean_roi_per_market_by_week.rename(columns={"roi": "mean_roi"}, inplace=True)
    return gr.LinePlot(
        value=mean_roi_per_market_by_week,
        x="month_year_week",
        y="ROI",
        color="market_creator",
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["month_year_week", "market_creator", "mean_roi"],
        height=HEIGHT,
        width=WIDTH,
    )


def get_trade_metrics_text() -> gr.Markdown:
    metric_text = """ 
        ## Description of the graph
        These metrics are computed weekly. The statistical measures are:
        * min, max, 25th(q1), 50th(median) and 75th(q2) percentiles
        * the upper and lower fences to delimit possible outliers
        * the average values as the dotted lines
        """

    return gr.Markdown(metric_text)