File size: 6,982 Bytes
e2483e1
 
2273640
e2483e1
 
6d293e0
7d215da
7a45667
e2483e1
 
 
7a45667
 
 
 
929ee61
7a45667
 
 
 
472bae0
7a45667
 
e2483e1
 
 
 
472bae0
7a45667
 
 
 
 
 
 
472bae0
7a45667
929ee61
 
 
7a45667
e2483e1
7a45667
e2483e1
 
7a45667
e2483e1
 
7a45667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929ee61
 
 
 
7a45667
 
 
 
e2483e1
 
 
929ee61
e2483e1
 
7a45667
e2483e1
 
 
 
 
 
 
 
 
 
 
7a45667
 
 
 
6d293e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3fadc8
 
6d293e0
a3fadc8
6d293e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3fadc8
 
6d293e0
 
 
 
 
 
 
 
 
 
 
 
 
e2483e1
 
 
 
 
 
 
 
 
 
 
7a45667
 
 
 
472bae0
 
 
7a45667
472bae0
 
 
 
 
 
 
 
 
 
 
2273640
 
472bae0
2273640
 
472bae0
 
 
 
 
 
2273640
472bae0
2273640
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr
import pandas as pd
import plotly.express as px


HEIGHT = 400
WIDTH = 1100


def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Prepares the trades data for analysis."""
    trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])
    trades_df["creation_timestamp"] = trades_df["creation_timestamp"].dt.tz_convert(
        "UTC"
    )
    trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
    trades_df["month_year"] = (
        trades_df["creation_timestamp"].dt.to_period("M").astype(str)
    )
    trades_df["month_year_week"] = (
        trades_df["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
    )
    trades_df["winning_trade"] = trades_df["winning_trade"].astype(int)
    return trades_df


def get_overall_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall trades data"""
    trades_count = trades_df.groupby("month_year_week").size().reset_index()
    trades_count.columns = trades_count.columns.astype(str)
    trades_count.rename(columns={"0": "trades"}, inplace=True)
    return trades_count


def get_overall_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall trades data"""
    trades_count = (
        trades_df.groupby(["month_year_week", "market_creator"], sort=False)
        .size()
        .reset_index()
    )
    trades_count.columns = trades_count.columns.astype(str)
    trades_count.rename(columns={"0": "trades"}, inplace=True)
    return trades_count


def get_overall_winning_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning trades data for the given tools and calculates the winning percentage."""
    winning_trades = (
        trades_df.groupby(["month_year_week"])["winning_trade"].sum()
        / trades_df.groupby(["month_year_week"])["winning_trade"].count()
        * 100
    )
    # winning_trades is a series, give it a dataframe
    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.columns = ["month_year_week", "winning_trade"]
    return winning_trades


def get_overall_winning_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning trades data for the given tools and calculates the winning percentage."""
    winning_trades = (
        trades_df.groupby(["month_year_week", "market_creator"], sort=False)[
            "winning_trade"
        ].sum()
        / trades_df.groupby(["month_year_week", "market_creator"], sort=False)[
            "winning_trade"
        ].count()
        * 100
    )
    # winning_trades is a series, give it a dataframe
    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.columns = ["month_year_week", "market_creator", "winning_trade"]
    return winning_trades


def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
    """Plots the trades data for the given tools and calculates the winning percentage."""
    return gr.BarPlot(
        value=trades_df,
        x="month_year_week",
        y="trades",
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["month_year_week", "trades"],
        height=HEIGHT,
        width=WIDTH,
    )


def integrated_plot_trades_per_market_by_week(trades_df: pd.DataFrame) -> gr.Plot:

    # adding the total
    trades_all = trades_df.copy(deep=True)
    trades_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )

    trades = get_overall_by_market_trades(all_filtered_trades)
    fig = px.bar(
        trades,
        x="month_year_week",
        y="trades",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )

    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly nr of trades",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(value=fig)


def integrated_plot_winning_trades_per_market_by_week(
    trades_df: pd.DataFrame,
) -> gr.Plot:
    # adding the total
    trades_all = trades_df.copy(deep=True)
    trades_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )
    final_df = get_overall_winning_by_market_trades(all_filtered_trades)
    fig = px.bar(
        final_df,
        x="month_year_week",
        y="winning_trade",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly % of winning trades",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(
        value=fig,
    )


def plot_winning_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
    """Plots the winning trades data for the given tools and calculates the winning percentage."""
    return gr.BarPlot(
        value=trades_df,
        x="month_year_week",
        y="winning_trade",
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["month_year_week", "winning_trade"],
        height=HEIGHT,
        width=WIDTH,
    )


def plot_winning_trades_per_market_by_week(
    trades_df: pd.DataFrame, market_type: str
) -> gr.Plot:
    """Plots the winning trades data for the given tools and calculates the winning percentage."""
    # if market_type is "all then no filter is applied"
    if market_type == "quickstart":
        trades = trades_df.loc[trades_df["market_creator"] == "quickstart"]
        color_sequence = ["goldenrod"]

    elif market_type == "pearl":
        trades = trades_df.loc[trades_df["market_creator"] == "pearl"]
        color_sequence = ["purple"]
    else:
        trades = trades_df
        color_sequence = ["darkgreen"]

    fig = px.bar(
        trades,
        x="month_year_week",
        y="winning_trade",
        color_discrete_sequence=color_sequence,
        title=market_type + " winning trades",
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly % of winning trades",
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(
        value=fig,
    )