File size: 2,993 Bytes
3b9d70e d2a6037 3b9d70e 8ba86e5 3b9d70e 8ba86e5 3b9d70e d2a6037 9fdf491 d2a6037 9fdf491 d2a6037 9fdf491 d2a6037 9fdf491 d2a6037 9fdf491 d2a6037 3b9d70e 9fdf491 d2a6037 9fdf491 d2a6037 3b9d70e 8ba86e5 3b9d70e 8ba86e5 3b9d70e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from datetime import datetime\n",
"from tqdm import tqdm\n",
"\n",
"import time\n",
"import requests\n",
"import datetime\n",
"import pandas as pd\n",
"from collections import defaultdict\n",
"from typing import Any, Union\n",
"from string import Template\n",
"from enum import Enum\n",
"from tqdm import tqdm\n",
"import numpy as np\n",
"from pathlib import Path"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"tools_df = pd.read_parquet(\"./data/tools.parquet\")\n",
"trades_df = pd.read_parquet(\"./data/all_trades_profitability.parquet\")\n",
"\n",
"tools_df['request_time'] = pd.to_datetime(tools_df['request_time'])\n",
"tools_df = tools_df[tools_df['request_time'].dt.year == 2024]\n",
"\n",
"trades_df['creation_timestamp'] = pd.to_datetime(trades_df['creation_timestamp'])\n",
"trades_df = trades_df[trades_df['creation_timestamp'].dt.year == 2024]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['trader_address', 'trade_id', 'creation_timestamp', 'title',\n",
" 'market_status', 'collateral_amount', 'outcome_index',\n",
" 'trade_fee_amount', 'outcomes_tokens_traded', 'current_answer',\n",
" 'is_invalid', 'winning_trade', 'earnings', 'redeemed',\n",
" 'redeemed_amount', 'num_mech_calls', 'mech_fee_amount', 'net_earnings',\n",
" 'roi'],\n",
" dtype='object')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trades_df.columns\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "akash",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|