File size: 118,960 Bytes
b9cf4a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import numpy as np\n",
"sns.set_style(\"darkgrid\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"tools = pd.read_parquet('../data/tools.parquet')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 286042 entries, 0 to 286041\n",
"Data columns (total 23 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 request_id 286042 non-null object \n",
" 1 request_block 286042 non-null object \n",
" 2 prompt_request 286042 non-null object \n",
" 3 tool 286042 non-null object \n",
" 4 nonce 286042 non-null object \n",
" 5 trader_address 286042 non-null object \n",
" 6 deliver_block 286042 non-null object \n",
" 7 error 286042 non-null int64 \n",
" 8 error_message 3147 non-null object \n",
" 9 prompt_response 285564 non-null object \n",
" 10 mech_address 285656 non-null object \n",
" 11 p_yes 282895 non-null float64\n",
" 12 p_no 282895 non-null float64\n",
" 13 confidence 282895 non-null float64\n",
" 14 info_utility 282895 non-null float64\n",
" 15 vote 205982 non-null object \n",
" 16 win_probability 282895 non-null float64\n",
" 17 market_creator 286042 non-null object \n",
" 18 title 286042 non-null object \n",
" 19 currentAnswer 235482 non-null object \n",
" 20 request_time 286042 non-null object \n",
" 21 request_month_year 286042 non-null object \n",
" 22 request_month_year_week 286042 non-null object \n",
"dtypes: float64(5), int64(1), object(17)\n",
"memory usage: 50.2+ MB\n"
]
}
],
"source": [
"tools.info()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tool\n",
"claude-prediction-offline 110152\n",
"claude-prediction-online 46686\n",
"prediction-offline-sme 43917\n",
"prediction-request-reasoning 41645\n",
"prediction-request-rag-claude 25431\n",
"prediction-offline 6215\n",
"prediction-online 2289\n",
"prediction-online-sme 2203\n",
"prediction-request-rag 2172\n",
"prediction-request-reasoning-claude 2025\n",
"prediction-url-cot-claude 1992\n",
"superforcaster 1080\n",
"stabilityai-stable-diffusion-v1-6 119\n",
"stabilityai-stable-diffusion-xl-1024-v1-0 116\n",
"Name: count, dtype: int64"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools.tool.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"tools_superforcaster = tools.loc[tools[\"tool\"]==\"superforcaster\"]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 1080 entries, 25 to 285910\n",
"Data columns (total 23 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 request_id 1080 non-null object \n",
" 1 request_block 1080 non-null object \n",
" 2 prompt_request 1080 non-null object \n",
" 3 tool 1080 non-null object \n",
" 4 nonce 1080 non-null object \n",
" 5 trader_address 1080 non-null object \n",
" 6 deliver_block 1080 non-null object \n",
" 7 error 1080 non-null int64 \n",
" 8 error_message 0 non-null object \n",
" 9 prompt_response 1080 non-null object \n",
" 10 mech_address 1080 non-null object \n",
" 11 p_yes 1080 non-null float64\n",
" 12 p_no 1080 non-null float64\n",
" 13 confidence 1080 non-null float64\n",
" 14 info_utility 1080 non-null float64\n",
" 15 vote 1068 non-null object \n",
" 16 win_probability 1080 non-null float64\n",
" 17 market_creator 1080 non-null object \n",
" 18 title 1080 non-null object \n",
" 19 currentAnswer 763 non-null object \n",
" 20 request_time 1080 non-null object \n",
" 21 request_month_year 1080 non-null object \n",
" 22 request_month_year_week 1080 non-null object \n",
"dtypes: float64(5), int64(1), object(17)\n",
"memory usage: 202.5+ KB\n"
]
}
],
"source": [
"tools_superforcaster.info()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"219"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(list(tools_superforcaster.trader_address.unique()))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>request_id</th>\n",
" <th>request_block</th>\n",
" <th>prompt_request</th>\n",
" <th>tool</th>\n",
" <th>nonce</th>\n",
" <th>trader_address</th>\n",
" <th>deliver_block</th>\n",
" <th>error</th>\n",
" <th>error_message</th>\n",
" <th>prompt_response</th>\n",
" <th>...</th>\n",
" <th>confidence</th>\n",
" <th>info_utility</th>\n",
" <th>vote</th>\n",
" <th>win_probability</th>\n",
" <th>market_creator</th>\n",
" <th>title</th>\n",
" <th>currentAnswer</th>\n",
" <th>request_time</th>\n",
" <th>request_month_year</th>\n",
" <th>request_month_year_week</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>7954746357421406217625419969909404056225427053...</td>\n",
" <td>36701081</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>superforcaster</td>\n",
" <td>1b609b7e-e0d2-4bb8-ad6b-7d0e6e6610b5</td>\n",
" <td>0x8dd0f0f64e575a356545d9ed096122a1887e64bf</td>\n",
" <td>36701099</td>\n",
" <td>0</td>\n",
" <td>None</td>\n",
" <td>\\nYou are an advanced AI system which has been...</td>\n",
" <td>...</td>\n",
" <td>0.6</td>\n",
" <td>0.4</td>\n",
" <td>No</td>\n",
" <td>0.70</td>\n",
" <td>quickstart</td>\n",
" <td>Will any new human rights organizations public...</td>\n",
" <td>Yes</td>\n",
" <td>2024-10-26 12:40:25</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-21/2024-10-27</td>\n",
" </tr>\n",
" <tr>\n",
" <th>487</th>\n",
" <td>3893466766708161182364759698039339419255094338...</td>\n",
" <td>36811522</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>superforcaster</td>\n",
" <td>80f86c11-29b7-480d-a73d-a1cc2738c911</td>\n",
" <td>0x6f2f057275f7072203b70aa4212d7d2448a2b16f</td>\n",
" <td>36811532</td>\n",
" <td>0</td>\n",
" <td>None</td>\n",
" <td>\\nYou are an advanced AI system which has been...</td>\n",
" <td>...</td>\n",
" <td>0.8</td>\n",
" <td>0.3</td>\n",
" <td>No</td>\n",
" <td>0.99</td>\n",
" <td>quickstart</td>\n",
" <td>Will any official statement from Russia confir...</td>\n",
" <td>Yes</td>\n",
" <td>2024-11-02 03:18:25</td>\n",
" <td>2024-11</td>\n",
" <td>2024-10-28/2024-11-03</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1200</th>\n",
" <td>7937905446830497137329572363351508546160463954...</td>\n",
" <td>36759585</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>superforcaster</td>\n",
" <td>544f9e46-1293-4d61-abcf-15eae6406281</td>\n",
" <td>0xea1f46f9ea5bb3119a94bff2e4b95aaf8a93f594</td>\n",
" <td>36759592</td>\n",
" <td>0</td>\n",
" <td>None</td>\n",
" <td>\\nYou are an advanced AI system which has been...</td>\n",
" <td>...</td>\n",
" <td>0.6</td>\n",
" <td>0.4</td>\n",
" <td>No</td>\n",
" <td>0.70</td>\n",
" <td>quickstart</td>\n",
" <td>Will the COP29 summit in Baku result in any ne...</td>\n",
" <td>Yes</td>\n",
" <td>2024-10-30 00:44:50</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-28/2024-11-03</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2999</th>\n",
" <td>7132897945614190217838117925907875446836020321...</td>\n",
" <td>36702802</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>superforcaster</td>\n",
" <td>a8e456c8-b87a-41fd-ba17-a69d9b2dc195</td>\n",
" <td>0xacb24b20805c6e475d2c17edb2a997c1ba47de79</td>\n",
" <td>36702815</td>\n",
" <td>0</td>\n",
" <td>None</td>\n",
" <td>\\nYou are an advanced AI system which has been...</td>\n",
" <td>...</td>\n",
" <td>0.6</td>\n",
" <td>0.4</td>\n",
" <td>No</td>\n",
" <td>0.70</td>\n",
" <td>quickstart</td>\n",
" <td>Will any of the Caspian Sea countries publicly...</td>\n",
" <td>No</td>\n",
" <td>2024-10-26 15:09:35</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-21/2024-10-27</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3104</th>\n",
" <td>8199746255688176940073355030356696899510084324...</td>\n",
" <td>36795210</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>superforcaster</td>\n",
" <td>c4163205-eef9-43b5-8e3f-b879f1e69d7b</td>\n",
" <td>0xb2912a22ee91272861931b693c434d420610abfe</td>\n",
" <td>36795222</td>\n",
" <td>0</td>\n",
" <td>None</td>\n",
" <td>\\nYou are an advanced AI system which has been...</td>\n",
" <td>...</td>\n",
" <td>0.6</td>\n",
" <td>0.4</td>\n",
" <td>No</td>\n",
" <td>0.70</td>\n",
" <td>quickstart</td>\n",
" <td>Will the Brazilian government announce a forma...</td>\n",
" <td>None</td>\n",
" <td>2024-11-01 03:54:10</td>\n",
" <td>2024-11</td>\n",
" <td>2024-10-28/2024-11-03</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 23 columns</p>\n",
"</div>"
],
"text/plain": [
" request_id request_block \\\n",
"25 7954746357421406217625419969909404056225427053... 36701081 \n",
"487 3893466766708161182364759698039339419255094338... 36811522 \n",
"1200 7937905446830497137329572363351508546160463954... 36759585 \n",
"2999 7132897945614190217838117925907875446836020321... 36702802 \n",
"3104 8199746255688176940073355030356696899510084324... 36795210 \n",
"\n",
" prompt_request tool \\\n",
"25 Please take over the role of a Data Scientist ... superforcaster \n",
"487 Please take over the role of a Data Scientist ... superforcaster \n",
"1200 Please take over the role of a Data Scientist ... superforcaster \n",
"2999 Please take over the role of a Data Scientist ... superforcaster \n",
"3104 Please take over the role of a Data Scientist ... superforcaster \n",
"\n",
" nonce \\\n",
"25 1b609b7e-e0d2-4bb8-ad6b-7d0e6e6610b5 \n",
"487 80f86c11-29b7-480d-a73d-a1cc2738c911 \n",
"1200 544f9e46-1293-4d61-abcf-15eae6406281 \n",
"2999 a8e456c8-b87a-41fd-ba17-a69d9b2dc195 \n",
"3104 c4163205-eef9-43b5-8e3f-b879f1e69d7b \n",
"\n",
" trader_address deliver_block error \\\n",
"25 0x8dd0f0f64e575a356545d9ed096122a1887e64bf 36701099 0 \n",
"487 0x6f2f057275f7072203b70aa4212d7d2448a2b16f 36811532 0 \n",
"1200 0xea1f46f9ea5bb3119a94bff2e4b95aaf8a93f594 36759592 0 \n",
"2999 0xacb24b20805c6e475d2c17edb2a997c1ba47de79 36702815 0 \n",
"3104 0xb2912a22ee91272861931b693c434d420610abfe 36795222 0 \n",
"\n",
" error_message prompt_response ... \\\n",
"25 None \\nYou are an advanced AI system which has been... ... \n",
"487 None \\nYou are an advanced AI system which has been... ... \n",
"1200 None \\nYou are an advanced AI system which has been... ... \n",
"2999 None \\nYou are an advanced AI system which has been... ... \n",
"3104 None \\nYou are an advanced AI system which has been... ... \n",
"\n",
" confidence info_utility vote win_probability market_creator \\\n",
"25 0.6 0.4 No 0.70 quickstart \n",
"487 0.8 0.3 No 0.99 quickstart \n",
"1200 0.6 0.4 No 0.70 quickstart \n",
"2999 0.6 0.4 No 0.70 quickstart \n",
"3104 0.6 0.4 No 0.70 quickstart \n",
"\n",
" title currentAnswer \\\n",
"25 Will any new human rights organizations public... Yes \n",
"487 Will any official statement from Russia confir... Yes \n",
"1200 Will the COP29 summit in Baku result in any ne... Yes \n",
"2999 Will any of the Caspian Sea countries publicly... No \n",
"3104 Will the Brazilian government announce a forma... None \n",
"\n",
" request_time request_month_year request_month_year_week \n",
"25 2024-10-26 12:40:25 2024-10 2024-10-21/2024-10-27 \n",
"487 2024-11-02 03:18:25 2024-11 2024-10-28/2024-11-03 \n",
"1200 2024-10-30 00:44:50 2024-10 2024-10-28/2024-11-03 \n",
"2999 2024-10-26 15:09:35 2024-10 2024-10-21/2024-10-27 \n",
"3104 2024-11-01 03:54:10 2024-11 2024-10-28/2024-11-03 \n",
"\n",
"[5 rows x 23 columns]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools_superforcaster.head()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"market_creator\n",
"quickstart 944\n",
"pearl 136\n",
"Name: count, dtype: int64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools_superforcaster.market_creator.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='vote', ylabel='currentAnswer'>"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAdyElEQVR4nO3df5BV9X3/8dey6CIUKehUJ8gvbSU0jlbUpSrGisQoFWPQaOrP2CQOBn8FQeKoaPnhD2yiUQuMBc1ojPVHAAUxIqOMpuMPTOpkWpVMqQQQWb9YcRCXLOB+/8hXppTkG/buxbt+eDxmdnY853r2fWbunfvknHPPrWttbW0NAEAhOtV6AACAahI3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABF6VzrAWrpvfc2xP2Z+Z/q6pJ99unuuQE15HXIH/LJc+OP2a3jprU1Xjj8Xp4bUHteh1TKaSkAoCjiBgAoirgBAIoibgCAoogbAKAo4gYAKIq4AQCKIm4AgKKIGwCgKOIGACiKuAEAiiJuAICiiBsAoCjiBgAoSudaD1CaUdfeU+sRYLfXdfiYWo9Au21Ksketh6BCPz5hc03/viM3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABFETcAQFHEDQBQFHEDABRF3AAARRE3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABFETcAQFHEDQBQFHEDABRF3AAARRE3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABFETcAQFHEDQBQFHEDABRF3AAARRE3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABFETcAQFHEDQBQFHEDABRF3AAARRE3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABFETcAQFHEDQBQFHEDABRF3AAARRE3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABFETcAQFHEDQBQFHEDABRF3AAARRE3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFCUmsXN2LFjc/zxx6e5uXmHdRdddFG+/vWvp7W1tQaTAQCfZTWLmwkTJmTDhg2ZOXPmdssXLVqUpUuXZtKkSamrq6vRdADAZ1XN4ma//fbLZZddlvvuuy+rVq1KkmzatCm33HJLLrroohx88MG1Gg0A+Ayr6TU3559/fvr165fbbrstSTJr1qx06tQpY8aMyTvvvJPRo0fnsMMOy7Bhw3L33Xdn69atSZLNmzfnuuuuy5AhQ3L44Ydn9OjRaWpqquWuAAAdRE3jpnPnzpk4cWIWLVqUxYsXZ/bs2bnhhhvS0NCQSy+9NPvss0/mzp2bm2++OfPnz992CuvBBx/M0qVLc++99+axxx7Lxo0bc9NNN7X579fVVf8HAHZ3u+L9tS3vs5137e79cUcddVRGjhyZK664Il/+8pdz3HHH5cUXX8yaNWvy6KOPplOnTjnwwAMzYcKEXHPNNRkzZkxWr16dhoaG9O7dO3/6p3+aW265JevXr2/z395nn+7V3yEA2M3tu29t319rHjdJMnr06DzxxBMZM2ZMkmT58uVZv359jjjiiG2P+fjjj7Np06a8//77Ofvss/Pkk09m6NChaWxszPDhwzNq1Kg2/9333tsQH8gCgOpat27DLtluXd3OHZjoEHHT0NCw3e8tW7bkwAMPzPTp03d4bPfu3dOzZ888++yzWbJkSZYsWZIf/OAHWbBgQR588ME2fcKqtTXiBgCqrNbvrR0ibv63AQMGZM2aNenVq1e6d/9dof3rv/5r5syZk2nTpmXevHnZc889M2LEiJxyyil57bXXcvbZZ+e9997LvvvuW+PpAYBa6pB3KB46dGh69+6d8ePHZ9myZXn11Vdz/fXXZ6+99kp9fX02bNiQqVOn5sUXX8yqVasyf/787L///unZs2etRwcAaqxDHrmpr6/PjBkzMnny5Jx11lnp2rVrTj755EyYMCFJcu6552bt2rUZP358PvjggxxyyCGZMWNG6uvrazw5AFBrda278XccrFtX/QuKR117T3U3CLRZ1+Fjaj0C7NZ+fMLmXbLdurqd+yRWhzwtBQBQKXEDABRF3AAARRE3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABFETcAQFHEDQBQFHEDABRF3AAARRE3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABFETcAQFHEDQBQFHEDABRF3AAARRE3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABFqShuZs2albVr11Z7FgCAdqsobmbOnJnNmzdXexYAgHarKG5OPfXUzJgxIytWrEhLS0u1ZwIAqFjnSv6n559/PmvWrMncuXN/7/o33nijXUMBAFSqori55ZZbqj0HAEBVVBQ3jY2NSZIPP/wwK1euzJ//+Z+npaUlf/Inf1LV4QAA2qqia25aWlpy3XXXpbGxMWeeeWaampryve99L9/85jfzwQcfVHtGAICdVlHcTJs2Lf/5n/+ZuXPnpqGhIUly2WWX5f3338+UKVOqOiAAQFtUFDeLFi3Ktddem4EDB25bNnDgwEyePDnPP/981YYDAGiriuJm48aN2WuvvXZY/vHHH2fr1q3tHgoAoFIVxc2wYcNy++2358MPP9y2bNWqVZkyZUqOP/74qg0HANBWFcXNxIkT06lTpzQ2Nqa5uTlnnHFGTjrppOy99965/vrrqz0jAMBOq+ij4N27d89dd92VVatWZfny5dmyZUsGDBiQgw46qNrzAQC0SUVx8zd/8zc57rjjctxxx+WYY45xfxsAoMOo6LTUlClT0r1798yYMSNHH310zj333MycOTP/8R//Ue35AADapKIjN0OHDs3QoUOTJO+//35eeumlPP3007nzzjvTq1ev/PznP6/qkAAAO6uiuEmSpqam/PKXv8wvfvGL/PKXv8yvf/3r9O/fP0ceeWQ15wMAaJOK4mbYsGFZu3ZtDj300Bx++OH5zne+k8GDB6dXr17Vng8AoE0quubmmGOOSZ8+ffLWW29lxYoVWbFiRVauXJktW7ZUez4AgDap6MjNJ98ftW7duixdujSvvvpqJk2alBUrVuQLX/hCHnjggaoOCQCwsyo6cvOJLl26pGvXrtlzzz3TqVOnbNmyJa2trdWaDQCgzSo6cjNt2rS88sorefPNN/O5z30uxxxzTEaPHp2//uu/ds8bAKCmKoqbFStWZNSoURk6dGj69u1b7ZkAACpWUdxMnz49y5cvT8+ePZMkL7zwQp599tn85V/+Zb72ta9VdUAAgLao6Jqbhx9+OKeddlreeOONvP7667nkkkuyatWq/PCHP8wPf/jDas8IALDTKoqbWbNm5dZbb01jY2N++tOfZtCgQZk1a1Zuv/32PProo9WeEQBgp1UUN01NTTniiCOSJM8991yGDx+eJNl///2zcePG6k0HANBGFV1zc+CBB2b+/Pnp1atX1qxZk+HDh2fz5s2599578/nPf77aMwIA7LSK4mbChAm58sor88EHH+Scc87JQQcdlEmTJuWZZ57JzJkzqz0jAMBOq2ut8K57H3/8cTZs2JAePXok+d3dinv06JE99tijqgPuSuvWbUi17zk46tp7qrtBoM26Dh9T6xFgt/bjEzbvku3W1SX77tv9jz6u4m8F/+ijj/LWW2/93rsSH3XUUZVuFgCgXSqKm8cffzw33nhjmpubd1hXV1eXN954o92DAQBUoqK4uf322/O1r30tl19+ua9bAAA6lIo+Cr5+/fpccMEFwgYA6HAqipsTTjghixYtqvYsAADtVtFpqf322y+33357nnrqqfTr12+HT0jdfPPNVRkOAKCtKoqbDz74IKeeemq1ZwEAaLeK4uYPHZlpaWnJ4sWL2zUQAEB7VHyfm//p3/7t3zJ37tz87Gc/y4YNGzJixIhqbBYAoM0qjpt33nkn8+bNy7x587Jy5cp069Ytp512Wv7u7/6umvMBALRJm+Kmubk5Tz/9dObOnZulS5dmjz32yDHHHJNVq1blxz/+sS/NBABqbqfjZsKECXnmmWeyxx575Ljjjsv3v//9HH/88enatWu+8IUvpHPnqpzhAgBol50ukscffzz9+vXLeeedlyFDhuTggw/elXN9ZtW9v7LWI8Bu7/+0bKn1CEAN7XTcLF68OAsXLsyjjz6am266KZ/73OcyfPjwnHjiiamrq9uVMwIA7LSdvkPxAQcckIsvvjhPPPFE5s+fn5EjR2bJkiW54IILsmXLlsyePTuvv/76rpwVAOCPqmttbW1tzwZ+9atf5cknn8zPfvazNDU1ZdCgQZk7d2615tul1q3bkPbt/Y7O+M511d0g0GYffmVqrUeA3drTX67ym+v/U1eX7Ltv9z/6uHZfBXzooYfm0EMPzfe+970sXbo0jz/+eHs3CQBQsYq+OHPQoEH57//+7+2W1dXVpXfv3lm4cGFVBgMAqMROH7mZN29e5syZkyRpbW3NmDFjdvjCzHfffTd/9md/Vt0JAQDaYKfj5ktf+lJWr16dJHnllVfyV3/1V+nWrdt2j+natWu+9KUvVXdCAIA22Om46datWy699NIkSe/evTNixIg0NDTsssEAACpR0QXFX/3qV/Ob3/wm//7v/57NmzfvsP70009v71wAABWpKG5mzZqVf/zHf0yPHj12ODVVV1cnbgCAmqkobu69996MHz8+3/zmN6s9DwBAu1T0UfDf/va3Oemkk6o9CwBAu1UUNyNHjsxPfvKTtPPmxgAAVVfRaakPP/wwjz32WBYsWJADDjhgh/vd3H///VUZDgCgrSqKm/79+2f06NHVngUAoN0qiptP7ncDANDRVHTNTZI88cQTGTVqVI488sisWrUqU6dOzT333FPN2QAA2qyiuPnJT36SadOmZdSoUdtu4nfIIYdk9uzZufvuu6s6IABAW1QUNw888ECmTJmS8847L506/W4TX/nKVzJt2rQ8+uijVR0QAKAtKoqbNWvW5KCDDtpheZ8+fbJ+/fr2zgQAULGK4uawww7LvHnztlvW2tqae++9N4ceemg15gIAqEhFn5a67rrrcvHFF2fJkiVpaWnJP/zDP2TFihXZtGlT/vmf/7naMwIA7LSK4ubggw/O008/nfnz52f58uXZunVrTjzxxJx22mk7fJEmAMCnqaK4GTVqVG6++eaceeaZ1Z4HAKBdKrrm5t133019fX21ZwEAaLeKjtycfvrp+da3vpXTTjstvXv3TkNDww7rAQBqoaK4WbhwYTp16pQFCxbssK6urk7cAAA1U1Hc3HrrrTn00EN3OGIDAFBrFV1zc+mll+att96q9iwAAO1WUdz8xV/8RX71q19VexYAgHar6LRUjx49csMNN+TOO+/MAQcckD333HO79ffff39VhgMAaKuK4mbQoEEZNGhQtWcBAGi3iuLm0ksvrfYcAABVUVHcXHPNNf/f9TfffHNFwwAAtFdFFxT/b1u2bMlbb72VhQsXplevXtXYJABARSo6cvOHjszMmjUrv/71r9s1EABAe1TlyM0nTj755DzzzDPV3CQAQJtULW4++uijPPzww+nZs2e1NgkA0GYVnZb6/Oc/n7q6uh2Wd+nSJZMnT273UAAAlaoobu6///589NFH6dSpU7p06ZIkmTlzZs4777wMGzasqgMCALRFRaelli1blrFjx+a9995LY2NjGhsbM3DgwIwbNy6PPPJItWcEANhpFcXNfffdl+9///v56le/um3ZhAkTctttt+Wee+6p2nAAAG1VUdy8//776du37w7LBwwYkHXr1rV7KACASlUUN0cccUTuuuuuNDc3b1v229/+NjNnzszhhx9eteEAANqqoguKJ06cmL//+7/P0KFD079//yTJypUrs++++2b69OnVnA8AoE0qipu+fftm4cKFeeGFF7JixYp07tw5/fv3z9ChQ1NfX1/tGQEAdlpFcZMke+65Z0488cRqzgIA0G5V/foFAIBaEzcAQFHEDQBQFHEDABRF3AAARRE3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABFETcAQFHEDQBQFHEDABRF3AAARRE3AEBRxA0AUBRxAwAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABFETcAQFHEDQBQFHEDABRF3AAARRE3AEBRxA0AUJQOFTcDBw7MVVddtcPyOXPmZNiwYTWYCAD4rOlQcZMkCxYsyIsvvljrMQCAz6gOFze9e/fOpEmT0tLSUutRAIDPoA4XN1deeWWampoye/bsP/iYtWvX5oorrkhjY2OGDBmSKVOmiCEAIEkHjJv99tsvl19+eWbOnJlVq1btsL6lpSUXXnhhmpub88ADD+SOO+7IkiVLMm3atDb/rbq66v8AwO5uV7y/tuV9tvOu3b3KnH/++ZkzZ06mTp2amTNnbrfuhRdeSFNTUx555JH06NEjSTJx4sRccskl+e53v5tu3brt9N/ZZ5/uVZ0bAEj23be2768dMm7q6+tz44035pxzzsnixYu3W7d8+fL0799/W9gkyeDBg7Nly5asXLkygwYN2um/8957G9LaWrWxAYAk69Zt2CXbravbuQMTHe601CcGDx6cM844I1OnTk1zc/O25Q0NDTs8duvWrdv93lmtrdX/AYDd3a54f23L+2yHjZskGTduXD766KPtLi4eMGBAVqxYkfXr129b9tprr6Vz587p27dvDaYEADqSDh03PXv2zLhx4/L2229vW3bsscemT58+ufrqq7Ns2bK89NJLmTx5ck499dTsvffeNZwWAOgIOnTcJMmZZ56Zww8/fNt/19fXZ/r06UmSs846K2PHjs2JJ56YSZMm1WpEAKAD6VAXFC9btmyHZXV1dfmXf/mX7Zb16dMn99xzz6c1FgDwGdLhj9wAALSFuAEAiiJuAICiiBsAoCjiBgAoirgBAIoibgCAoogbAKAo4gYAKIq4AQCKIm4AgKKIGwCgKOIGACiKuAEAiiJuAICiiBsAoCjiBgAoirgBAIoibgCAoogbAKAo4gYAKIq4AQCKIm4AgKKIGwCgKOIGACiKuAEAiiJuAICiiBsAoCjiBgAoirgBAIoibgCAoogbAKAo4gYAKIq4AQCKIm4AgKKIGwCgKOIGACiKuAEAiiJuAICiiBsAoCjiBgAoirgBAIoibgCAoogbAKAo4gYAKIq4AQCKIm4AgKKIGwCgKOIGACiKuAEAiiJuAICiiBsAoCjiBgAoirgBAIoibgCAoogbAKAo4gYAKIq4AQCKIm4AgKKIGwCgKOIGACiKuAEAiiJuAICiiBsAoCjiBgAoirgBAIoibgCAoogbAKAo4gYAKIq4AQCKIm4AgKKIGwCgKOIGACiKuAEAiiJuAICiiBsAoCjiBgAoSl1ra2trrYeolXXrNmT33Xt+n7q6ZN99u3tuQA15HfKHfPLc+GMcuQEAiiJuAICiiBsAoCjiBgAoirgBAIoibgCAoogbAKAo4gYAKIq4AQCKIm4AgKKIGwCgKOIGACiKuAEAiiJuAICiiBsAoCidaz1ALdXV1XoCOppPnhOeG1A7Xof8ITv7nKhrbW1t3bWjAAB8epyWAgCKIm4AgKKIGwCgKOIGACiKuAEAiiJuAICiiBsAoCjiBgAoirgBAIoibtjtDBw4MFddddUOy+fMmZNhw4bVYCIo39ixY3P88cenubl5h3UXXXRRvv71r8cN86kWccNuacGCBXnxxRdrPQbsNiZMmJANGzZk5syZ2y1ftGhRli5dmkmTJqXOl0lRJeKG3VLv3r0zadKktLS01HoU2C3st99+ueyyy3Lfffdl1apVSZJNmzbllltuyUUXXZSDDz64xhNSEnHDbunKK69MU1NTZs+e/Qcfs3bt2lxxxRVpbGzMkCFDMmXKFDEE7XD++eenX79+ue2225Iks2bNSqdOnTJmzJi88847GT16dA477LAMGzYsd999d7Zu3Zok2bx5c6677roMGTIkhx9+eEaPHp2mpqZa7godnLhht7Tffvvl8ssvz8yZM7f9K/J/amlpyYUXXpjm5uY88MADueOOO7JkyZJMmzatBtNCGTp37pyJEydm0aJFWbx4cWbPnp0bbrghDQ0NufTSS7PPPvtk7ty5ufnmmzN//vxtp7AefPDBLF26NPfee28ee+yxbNy4MTfddFON94aOTNyw2/rkX5FTp07dYd0LL7yQpqam3HbbbRk4cGCOPvroTJw4MQ899FA2btxYg2mhDEcddVRGjhyZK664IieccEKOO+64vPTSS1mzZk0mT56cAw88MEOGDMmECRNy//33J0lWr16dhoaG9O7dOwcddFBuueWWXHzxxTXeEzqyzrUeAGqlvr4+N954Y84555wsXrx4u3XLly9P//7906NHj23LBg8enC1btmTlypUZNGjQpz0uFGP06NF54oknMmbMmCS/e72tX78+RxxxxLbHfPzxx9m0aVPef//9nH322XnyySczdOjQNDY2Zvjw4Rk1alStxuczQNywWxs8eHDOOOOMTJ06Nd/61re2LW9oaNjhsZ+c///kN1CZT15fn/zesmVLDjzwwEyfPn2Hx3bv3j09e/bMs88+myVLlmTJkiX5wQ9+kAULFuTBBx/0CSt+L6el2O2NGzcuH3300XYXFw8YMCArVqzI+vXrty177bXX0rlz5/Tt27cGU0K5BgwYkDVr1qRXr17p169f+vXrl9WrV+fOO+9MXV1d5s2bl+eeey6nnHJKbr311syaNSu/+MUv8t5779V6dDooccNur2fPnhk3blzefvvtbcuOPfbY9OnTJ1dffXWWLVuWl156KZMnT86pp56avffeu4bTQnmGDh2a3r17Z/z48Vm2bFleffXVXH/99dlrr71SX1+fDRs2ZOrUqXnxxRezatWqzJ8/P/vvv3969uxZ69HpoJyWgiRnnnlmfvrTn+bdd99N8rvrcaZPn57JkyfnrLPOSrdu3TJy5MiMHTu2xpNCeerr6zNjxoxtr7euXbvm5JNPzoQJE5Ik5557btauXZvx48fngw8+yCGHHJIZM2akvr6+xpPTUdW1ut81AFAQp6UAgKKIGwCgKOIGACiKuAEAiiJuAICiiBsAoCjiBgAoirgBAIoiboBiPfXUU75/CHZD4gYo0ttvv50rr7wyzc3NtR4F+JSJG6BIvlkGdl/iBujQvvvd7277AsVPXHXVVbn22muzdu3aXHHFFWlsbMyQIUMyZcqUtLS0JElOPPHEbb/nzJmTJHnmmWcyYsSIHHbYYTnzzDPzyiuvfLo7A3wqxA3Qof3t3/5tnnvuuWzevDlJ0tLSkueeey6nnHJKLrzwwjQ3N+eBBx7IHXfckSVLlmTatGlJkkcffXTb7xEjRuTNN9/MhAkTcskll+SJJ57Iaaedlm9/+9v5zW9+U7N9A3YNcQN0aF/84hfz8ccf5+WXX06S/PznP0+XLl2yadOmNDU15bbbbsvAgQNz9NFHZ+LEiXnooYeycePG9OrVK0nSq1evdOnSJbNnz85ZZ52VkSNHpl+/frngggvyxS9+MQ899FAtdw/YBTrXegCA/58999wzw4cPz6JFizJ06NAsWrQoX/7yl/Nf//Vf6d+/f3r06LHtsYMHD86WLVuycuXKdO/efbvtLF++PE899VQefvjhbcs2b96coUOHfmr7Anw6xA3Q4Y0YMSLXXHNNrrvuujz77LP5p3/6p7z++us7PG7r1q3b/f7f67797W/n9NNP3255ly5ddsnMQO04LQV0eMccc0y2bt2a++67L126dMmRRx6ZAQMGZMWKFVm/fv22x7322mvp3Llz+vbtm7q6uu22MWDAgKxevTr9+vXb9vPwww/n+eef/5T3BtjVxA3Q4XXu3DknnXRSZs6cmZNPPjl1dXU59thj06dPn1x99dVZtmxZXnrppUyePDmnnnpq9t577+y1115JkjfffDMbN27MN77xjSxcuDD3339/Vq5cmR/96Ef50Y9+lP79+9d254Cqq2t1MwjgM+Dll1/OBRdckEceeSSHHXZYkmTVqlWZPHlyXn755XTr1i0jR47M2LFj09DQkCQZP358nnrqqYwbNy7f+MY38uSTT+auu+7K6tWr07dv31x22WU55ZRTarlbwC4gbgCAojgtBQAURdwAAEURNwBAUcQNAFAUcQMAFEXcAABFETcAQFHEDQBQFHEDABRF3AAARRE3AEBR/i/Ds1MQuD2GkAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.histplot(tools_superforcaster, x=\"vote\", y=\"currentAnswer\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='currentAnswer', ylabel='vote'>"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAG2CAYAAAA9ev8TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABBOElEQVR4nO3deVyU5f7/8fcoDriEG2goJmCuqYh4RFNy7Vi55dJp1dRKTNRUNFPLVDIXStMUlKNZpqWnXEo9HUszy3LFo5bmArjghmJpoMAIzO8Pv83vTFgOOjeDzOv5eNyPc+a677mv666s93yu675vk9VqtQoAAMCJSrh6AAAAoPghYAAAAKcjYAAAAKcjYAAAAKcjYAAAAKcjYAAAAKcjYAAAAKcjYAAAAKcjYAAAAKcjYAAAUEydOHFCzz33nEJCQtS2bVstXLjQti8lJUX9+vVTkyZN9Mgjj2jr1q123/3hhx/UpUsXBQcHq2/fvkpJSSlQ3wQMAACKoby8PA0cOFAVK1bU6tWrNWnSJMXFxWnt2rWyWq2KjIyUj4+PVq5cqe7du2vIkCE6c+aMJOnMmTOKjIxUz5499emnn6pSpUoaPHiwCvJ2EQ+jLgwAALhOWlqa6tevr4kTJ6pcuXIKCAhQy5YtlZCQIB8fH6WkpGj58uUqU6aMatWqpW3btmnlypUaOnSoPvnkEzVs2FADBgyQJE2dOlWtWrXSzp07FRYW5lD/VDAAACiGqlSponfeeUflypWT1WpVQkKCdu3apebNm2vfvn1q0KCBypQpYzs+NDRUe/fulSTt27dPzZo1s+0rXbq07rvvPtt+RxAwAAC4Q1gsFmVkZNhtFovlpt9r3769nnrqKYWEhKhTp066cOGCqlSpYndM5cqVde7cOUm66X5HFMspkkmmuq4eAlAkPVbh5v8iAtxNg1+PGd6Hs/67VGnOEM2dO9eubciQIRo6dOhffm/OnDlKS0vTxIkTNXXqVGVmZspsNtsdYzabbWHlZvsdUSwDBgAAxVFERIT69+9v1/bHIHAjjRo1kiRlZ2dr1KhR6tWrlzIzM+2OsVgs8vLykiR5enrmCxMWi0Xe3t4Oj5UpEgAADFbCSZvZbFa5cuXstj8LGGlpadq4caNd27333qtr167J19dXaWlp+Y7/fVqkatWqN9zv6+tboGsGAAAGclbAKIhTp05pyJAhSk1NtbX99NNPqlSpkkJDQ3XgwAFlZWXZ9iUkJCg4OFiSFBwcrISEBNu+zMxMHTx40Lbf0WsGAAAGckXAaNSoke677z6NGzdOiYmJ2rJli2JiYjRo0CA1b95cfn5+Gjt2rI4ePar4+Hjt379fvXv3liT16tVLe/bsUXx8vI4ePaqxY8fK39/f4VtUf79mAABQzJQsWVKxsbEqXbq0Hn/8cY0fP159+vRR3759bfsuXLignj176vPPP9e8efNUrVo1SZK/v7/effddrVy5Ur1799alS5c0b948mUwmh/s3WQvyWK47BHeRADfGXSRAfoVxF8l0J/13aYz1sFPOUxi4iwQAAIO543SBO14zAAAwGBUMAAAM5vjKheKDgAEAgMHccbrAHa8ZAAAYjAoGAAAGc8df8wQMAAAM5o4Bwx2vGQAAGIwKBgAABnPHX/MEDAAADEbAAAAATueOAcMdrxkAABiMCgYAAAZzx1/zBAwAAAzmjgHDHa8ZAAAYjAoGAAAGc8df8wQMAAAM5o4Bwx2vGQAAGIwKBgAABnPHX/MEDAAADGZy9QBcwB1DFQAAMBgVDAAADOaOv+YJGAAAGIyAAQAAnM4dA4Y7XjMAADAYFQwAAAzmjr/mCRgAABjMHQOGO14zAAAwGBUMAAAM5o6/5gkYAAAYzB0DhjteMwAAMBgVDAAADOaOv+YJGAAAGMxVASM1NVVTpkzR9u3b5enpqUceeUQjR47U66+/rtWrV+c7PiwsTEuWLJEkNWvWTOnp6Xb79+zZo7JlyzrUNwEDAIBiyGq1atiwYfL29tayZct0+fJljRs3TiVKlND48eMVFRVlO/b06dPq06eP+vbtK+l6MElPT9fGjRvl5eVlO65MmTIO90/AAADAYK6oYCQnJ2vv3r36/vvv5ePjI0kaNmyYpk+frjFjxuiuu+6yHfvKK6/ooYceUseOHSVJSUlJ8vX1VY0aNW65fwIGAAAGM7mgT19fXy1cuNAWLn6XkZFh93nbtm3atWuXNmzYYGtLTExUYGDgbfVPwAAAwGDOqmBYLBZZLBa7NrPZLLPZnO9Yb29vhYeH2z7n5eVp6dKlatGihd1x8fHx6tGjh/z8/GxtSUlJyszMVJ8+fXTs2DHVr19f48aNK1DocMeFrQAA3JEWLFig0NBQu23BggUOfTcmJkYHDx7UiBEjbG0pKSnavn27+vTpY3dscnKyLl++rBdffFGxsbHy8vJSv3798lU//goVDAAADOasX/MRERHq37+/XduNqhd/FBMTow8++ECzZs1SnTp1bO0bNmxQ/fr1de+999odv2jRIl27ds12x8hbb72lNm3aaPPmzeratatDYyVgAABgMGcFjD+bDvkr0dHR+vjjjxUTE6NOnTrZ7fvuu+/UoUOHm/bj6ekpf39/paamOtwvUyQAABRTc+fO1fLlyzVz5kx17tzZbp/VatWPP/6opk2b5mvv2LGjVq1aZWu7evWqTpw4oaCgIIf7poIBAIDBTC64jSQpKUmxsbEaOHCgQkNDdeHCBds+X19fnT59WleuXMk3PWIymdS2bVu9++67ql69uipVqqTZs2fr7rvvVps2bRzun4ABAIDBSpishd7npk2blJubq7i4OMXFxdntO3z4sC5evChJKl++fL7vjh49Wh4eHoqKilJGRoZatGih+Ph4lSxZ0uH+TVartfCv2mCTTHVdPQSgSHqsguXmBwFupsGvxwzvY0vJOjc/yAFtco845TyFgQoGAAAGc8UUiasRMAAAMJgb5gvuIgEAAM5HBQMAAIOZXLDI09UIGAAAGIw1GAAAwOncMWCwBgMAADgdFQwAAAzmigdtuRoBAwAAg7nhDAlTJAAAwPmoYAAAYDB3XORJwAAAwGDuGDCYIgEAAE5HBQMAAIPxJE8AAOB0JZgiAQAAuH1UMAAAMJg7LvIkYAAAYDCTWIMBAACczB0rGKzBAAAATkcFAwAAg7ljBYOAAQCAwdzxbapMkQAAAKejggEAgMGYIgEAAE7nhvmCKRIAAOB8VDAAADAYLzsDAABO545rMJgiAQAATkcFAwAAg7nj69oJGAAAGIw1GAAAwOncsIDBGgwAAIqr1NRUDRs2TM2bN1d4eLimTp2q7OxsSdIbb7yhunXr2m1Lly61fXfdunXq2LGjgoODFRkZqV9++aVAfVPBAADAYK64i8RqtWrYsGHy9vbWsmXLdPnyZY0bN04lSpTQmDFjlJSUpKioKPXo0cP2nXLlykmS9u/fr/Hjx2vSpEmqV6+epkyZorFjx2rBggUO908FAwAAg5lMVqdsBZGcnKy9e/dq6tSpql27tpo1a6Zhw4Zp3bp1kqSkpCQ1aNBAvr6+tq106dKSpKVLl+rhhx/Wo48+qnr16mnGjBnasmWLUlJSHO6/SAWMzMxMHTp0SAcPHlRGRoarh4O/ULHWPXr6Pws1Nn2Php/YrPtHPWfbVyHAX32+WqyxGf/V4APrFfRgK7vvBnZoqRd/XKtxV/aq76YPVCHQv7CHDxjGw6+q/N+PVd3k/6r2gW2q+sZ4mTzNkqSqUyeowa/H7LaKL/SVpHztv2/lH+/pysvBHczX11cLFy6Uj4+PXXtGRoYyMjKUmpqqgICAG3533759atasme2zn5+fqlWrpn379jncf5GYIrl27ZpiYmL00UcfKScnR5Lk4eGhrl27atKkSTKbzS4eIeyYTHpqfbzO7PpRC0J6qFLtmur18Uz9djpVP328To+vmafzPx7RP5v1Ur1HO+rx1XM1r/4j+i3lrLxr+OmJNfP0zevvKvE/3+mBCZF6Yk2s5gd3c/VVAU7h/36sci9f1vFH/qGSFSvI793psubl6fyEqfKsW1upk6br0kef2o7PS7/+Y+pw3b/Znafy4Ofk3aOL0r/4qlDHD2M46zZVi8Uii8Vi12Y2m2/430lvb2+Fh4fbPufl5Wnp0qVq0aKFkpKSZDKZNH/+fH377beqUKGC+vfvb5suOX/+vKpUqWJ3vsqVK+vcuXMOj7VIVDCmT5+uzZs3Ky4uTrt379bOnTs1b9487d69W7NmzXL18PAH5ar66Nzen7X+xYn6JfGEEr/4Vsc2bdM9rUMV0K6FKtWqoXURE5R2KFlbp8Xr1La9ChnQS5LU9PnHdGb3T9o2c7EuHEzUZ/3HqkJAddVs09zFVwXcPnPtIJVp3lRnIl9W9qGjurptly5MnaXyva4HaM86tZS174Byz6fZNmtmliTZtZXw8lKlgf10dtgryvst3ZWXBCcxmZyzLViwQKGhoXabo+siYmJidPDgQY0YMULJyckymUwKCgpSfHy8HnvsMb322mv66qvrgTYrKytfaDGbzfnCzV8pEhWMdevWafbs2QoLC7O1tWnTRp6enho1apTGjBnjwtHhjzLOXdDKJ0bYPte4v6lqPvA3rR88Sf4tgnV2z0Fdu5pp239ya4L8WzaRJPm3CNaJb3fb9uVkZunsngOq0bKJTmzZWWjXABghJ/WCTvR6VrkX0uzaS3rfpRJ3lVOp6n6yJCbf9Dy+40bqyrff68qW740aKu5QERER6t+/v12bI1X+mJgYffDBB5o1a5bq1Kmj2rVrq127dqpQoYIkqV69ejp+/Lg+/vhjPfjgg/L09MwXJiwWi22NhiOKRAXDarWqcuXK+dorVaqkK1euuGBEcNRLx7/WgO8/Vsq2/+rnlRt0l5+v0s+ctzvmSupFefvfLUkqd4P9Gf+zH7iT5f2Writff/v/G0wmVXqhr658+4M869wra16efKKGqPZPPyjou3+r/BP511d4+FdT+d7dlBYztxBHDqM5q4JhNptVrlw5u+1mASM6OlqLFy9WTEyMOnXq9H/jMdnCxe+CgoKUmpoqSapatarS0uyDclpamnx9fR2+5iIRMFq0aKG33nrLbmHnb7/9ppkzZ9pVNVD0/KvXMH3UJUJ3N6mvTrPGqlSZ0srJtk+9OdkWefzfIrdSZUor9w/7c7MtKunJOhsUP1UnjZVX44Y6/8ZbMtcOkqxWZR9N0snHB+jXJSvk986buqvz3+2+U/GZfyjrvz8qM2GvawYNQ5hkdcpWUHPnztXy5cs1c+ZMde7c2dY+e/Zs9evXz+7YQ4cOKSgoSJIUHByshIQE276zZ8/q7NmzCg4OdrjvIjFFMm7cOPXt21fh4eEKDAyUJB07dkw1atRQXFyci0eHv3I24SdJ0oYRU9Vz2Vva+95KeZW1L6F5eJp17er1eeacrOx8YaKkp1lZl34rnAEDhaTKxDGq9GJ/nRowVNk/H1H2z0eU/p9Nyrt0WZKUfeCQPO8NVMUBzyh9/Ze2793V7WH9uvgjVw0bxUhSUpJiY2M1cOBAhYaG6sKFC7Z97dq1U3x8vBYtWqQHH3xQW7du1Zo1a7RkyRJJ0pNPPqk+ffqoSZMmatSokaZMmaK2bduqRo0aDvdfJAJG1apVtW7dOn377bdKTk6Wp6enAgMD1apVK5UoUSSKLPgfZatUln/LJjr82SZb24WDifLwNCv97AX51A+yO77c3T5KP3t9WiT9dKrK3e2Tb3/q3p+NHzhQSO6ePlEVBzyt0xEjlL72P7b238PF77KPJKpMeEvbZ4/qfvKqX4c7R4ohVzxoa9OmTcrNzVVcXFy+H+uHDx/W7NmzNWfOHM2ePVvVq1fX22+/rZCQEElSSEiIJk+erDlz5ujy5ctq1aqVoqOjC9R/kQgYklSqVCl16NBBHTp0cPVQcBMVAv31+Kq5mlWjjW09RbXQhrpy/qJObk3Q/aMGyMPLUzlZ1x9HW6N1qFK2Xi+1ndq+T/e0DrWdy6O0l/xCGmjLROabUTz4vDxMFfs/pVPPDVP651/Y2n3HjlDp5k11skcfW5tXwwayHE2yfS4d2kTXTp1WzqkzhTpmGM/kgtepDhw4UAMHDvzT/R07dlTHjh3/dH/Pnj3Vs+etP4fFZQGjffv2MjkQ6UwmkzZu3FgII4Kjzuz6UWcSDqjbe29qw4ipqhBQXQ/GjNZ3U+brxJadupxyVt0XT9W30bGq07WdqjdvrM/6j5Uk/fe9lbp/9HNqNeYFHVm7WQ9MiNSvx07p+Dc7XHxVwO0z16kl39FDlTYrTle371LJKv+/Wpf+n03yGfGiKg95Qb+t26By7cNV/omeOtHtSdsxXvXrKPtQoiuGDoOZ3LAY77KAMXTo0D/dd/XqVb333ns6ffq0rVyDosOal6fl3Qfrkbmv6bltK3TtSqZ2zPlQO+Zcn7tb3n2wui2aooEJq/RL4gmt6BGp31LOSpIunzitf/Ucqk7vjFObCZFK+eG/WvFopCsvB3Caux55UCYPD/mOHirf0fb/jjtYMVApz0aqyrgR8h03UtdOntLpF15S5q7/2o4pWcVHuZcv//G0wB3JZLVai9RL6jdt2qQpU6bo6tWrGjVqlHr37l3gc0wy1TVgZMCd77EKjj8kB3AXDX49ZngfZwPuccp5/I6fdMp5CkORWYNx+vRpvfHGG9qyZYt69uypUaNG5btHFwCAO5IL1mC4mssDRk5OjhYtWqS4uDjVrFlTy5YtY1oEAIA7nEsDxo4dOzR58mSlpqZq+PDh6tu3L7elAgCKHRZ5FqJRo0Zp/fr1ql69uiZOnKiqVavaPTXsf/3tb3+7YTsAAHcCR+6aLG5cFjDWrVsnSTp16pRGjRr1p8eZTCb9/DMPYQIA4E7isoBx6NAhV3UNAEChYooEAAA4nxtOkbhhpgIAAEajggEAgMGYIgEAAE7nipeduRoBAwAAg7nhEgzWYAAAAOejggEAgMFYgwEAAJzPDddguGGmAgAARqOCAQCAwdxxkScBAwAAg7njbapMkQAAAKejggEAgMG4iwQAADidyQ0XYbhhpgIAAEajggEAgNHc8Oc8AQMAAIO54QwJAQMAAKNxmyoAAIATUMEAAMBg3KYKAACczw0XYbhhpgIAAEYjYAAAYDBTCedsBZWamqphw4apefPmCg8P19SpU5WdnS1J2rt3r5544gmFhISoU6dO+uSTT+y+261bN9WtW9duO3LkiMN9M0UCAIDBXHEXidVq1bBhw+Tt7a1ly5bp8uXLGjdunEqUKKEBAwbohRde0JNPPqlp06bpwIEDGjt2rHx9fdW2bVvl5ubq+PHjWrp0qQICAmznrFixosP9EzAAACiGkpOTtXfvXn3//ffy8fGRJA0bNkzTp0/XPffcIx8fH40cOVKSFBAQoB07dmjt2rVq27atTp06pWvXrqlx48by9PS8pf4JGAAAGMwVazx9fX21cOFCW7j4XUZGhsLDw1W/fv1838nIyJAkJSYmys/P75bDhcQaDAAADGcqYXLKZrFYlJGRYbdZLJYb9unt7a3w8HDb57y8PC1dulQtWrSQv7+/mjRpYtt38eJFrV+/Xi1btpQkJSUlqVSpUoqIiFCrVq30zDPPaP/+/QW6ZgIGAAB3iAULFig0NNRuW7BggUPfjYmJ0cGDBzVixAi79qysLA0dOlQ+Pj56/PHHJUnHjh3T5cuX9dhjjyk+Pl61atXSs88+q7Nnzzo8VpPVarU6fml3hkmmuq4eAlAkPVbhxr90AHfW4NdjhveR3Sn/dMStMK3dl69iYTabZTab//J7MTExWrx4sWbNmqVOnTrZ2q9cuaLBgwfr6NGj+uijj2wLOnNycpSVlaVy5cpJur5gtFu3burcubMGDRrk0FhZgwEAgMGc9SRPR8LEH0VHR+vjjz9WTEyMXbjIyMjQ888/r5MnT+qDDz6wu1vEw8PDFi4kyWQyKSgoSKmpqQ73yxQJAAAGc9YajIKaO3euli9frpkzZ6pz58629ry8PA0ZMkSnTp3Shx9+qNq1a9t9r0+fPpo7d67d8YcPH1ZQUJDDfVPBAACgGEpKSlJsbKwGDhyo0NBQXbhwwbZv8+bN2rFjh+Li4uTt7W3bV6pUKVWoUEHt27fXvHnzVL9+fQUGBmrJkiVKT09Xjx49HO6fgAEAgMFccZvqpk2blJubq7i4OMXFxdnta926tfLy8hQREWHX3rx5c3344Yfq16+fsrOz9cYbbygtLU3BwcFavHix3bTJzbDIE3AjLPIE8iuMRZ653e5zynlKfn7AKecpDKzBAAAATscUCQAARnPDn/MEDAAAjOaCl525mhtmKgAAYDQqGAAAGM0Nf84TMAAAMJobTpEQMAAAMJobVjDc8JIBAIDRqGAAAGA0pkgAAIDTuWHAYIoEAAA4HRUMAACM5oY/5wkYAAAYjSkSAACA20cFAwAAo7nhz3kCBgAARmOKBAAA4PZRwQAAwGjuV8AgYAAAYDg3nCIhYAAAYDQ3DBiswQAAAE5HBQMAAKO54c95AgYAAEZjigQAAOD2UcEAAMBgJjf8OU/AAADAaEyRAAAA3D4qGAAAGM0Nf84TMAAAMBpTJAAAALePCgYAAEZzwwoGAQMAAKO54XyBG14yAACFrITJOVsBpaamatiwYWrevLnCw8M1depUZWdnS5JSUlLUr18/NWnSRI888oi2bt1q990ffvhBXbp0UXBwsPr27auUlJSCXXKBRwsAAIo8q9WqYcOGKTMzU8uWLdOsWbO0efNmvfPOO7JarYqMjJSPj49Wrlyp7t27a8iQITpz5owk6cyZM4qMjFTPnj316aefqlKlSho8eLCsVqvD/TNFAgCA0Vzwcz45OVl79+7V999/Lx8fH0nSsGHDNH36dD3wwANKSUnR8uXLVaZMGdWqVUvbtm3TypUrNXToUH3yySdq2LChBgwYIEmaOnWqWrVqpZ07dyosLMyh/qlgAABgNBdMkfj6+mrhwoW2cPG7jIwM7du3Tw0aNFCZMmVs7aGhodq7d68kad++fWrWrJltX+nSpXXffffZ9jvilioYKSkp+uijj3TixAlNnDhR3377rQICAuwGAwAAnMtischisdi1mc1mmc3mfMd6e3srPDzc9jkvL09Lly5VixYtdOHCBVWpUsXu+MqVK+vcuXOSdNP9jihwBWPXrl3q1q2bTp8+re+++07Z2dlKTk5Wv3799OWXXxb0dAAAFH8lnLMtWLBAoaGhdtuCBQscGkJMTIwOHjyoESNGKDMzM18oMZvNtvBys/2OKHAFIyYmRlFRUXrmmWcUEhIiSXr55ZdVpUoVzZkzR3//+98LekoAAIo3Jz0HIyIiQv3797dru1H14o9iYmL0wQcfaNasWapTp448PT116dIlu2MsFou8vLwkSZ6envnChMVikbe3t8NjLXAF48iRI2rTpk2+9g4dOujkyZMFPR0AAHCQ2WxWuXLl7LabBYzo6GgtXrxYMTEx6tSpkySpatWqSktLszsuLS3NNi3yZ/t9fX0dHmuBA0b16tX1448/5mv/5ptvVL169YKeDgCA4s9JUyQFNXfuXC1fvlwzZ85U586dbe3BwcE6cOCAsrKybG0JCQkKDg627U9ISLDty8zM1MGDB237HVHgKZLhw4frlVde0Y8//qjc3FytWbNGp06d0vr16zVjxoyCng4AgOLPBY8KT0pKUmxsrAYOHKjQ0FBduHDBtq958+by8/PT2LFjNXjwYG3evFn79+/X1KlTJUm9evXSokWLFB8fr3bt2mnevHny9/d3+BZVSTJZC/LUjP9z6NAhvffee0pKSlJubq4CAwPVr1+/AiUbI00y1XX1EIAi6bEKji/QAtxFg1+PGd5H3tRWTjlPibHfO3xsfHy83n777RvuO3z4sE6cOKHx48dr3759qlmzpsaNG6f777/fdsyWLVv05ptv6ty5cwoJCVF0dLRq1KjhcP8FDhhr1qzRI488km/O5+rVq/r000/Vt2/fgpzOEAQM4MYIGEB+hRIwprd2ynlKjNl684OKCIemSH755RfbPM3YsWNVu3ZtVaxY0e6YQ4cO6a233ioSAQMAgCLFDR9r6VDA2Llzp4YPHy6T6focUu/evW/4PPJu3bo5d3QAABQHvK79xh566CF9/fXXysvLU8eOHfXJJ5+oUqVKtv0mk0mlS5fOV9UAAADuyeG7SKpVqybp+lSIdP2WlRMnTigvL0/33HOPypUrZ8wIb8HrGW+5eghA0VS2mqtHALgnpkhu7tq1a4qJidFHH32knJyc6yfx8FDXrl01adIkh54oBgCAWzG53xRJgTPV9OnTtXnzZsXFxWn37t3auXOn5s2bp927d2vWrFlGjBEAANxhClzBWLdunWbPnm33sI02bdrI09NTo0aN0pgxY5w6QAAA7njuV8AoeMCwWq2qXLlyvvZKlSrpypUrThkUAADFClMkN9eiRQu99dZbysjIsLX99ttvmjlzZoEeIQoAAIqvAlcwxo0bp759+yo8PFyBgYGSpGPHjqlGjRqKi4tz+gABALjjuV8Bo+ABY+7cuXr99deVmZmp5ORkeXp6KjAwUK1atVKJEm54Hw4AADfjhlMkBQ4YV69e1dChQ1W6dGl16tRJDz/8sJo1a2bE2AAAwB2qwAHj7bfflsVi0datW/XVV18pMjJSpUuX1kMPPaTOnTurUaNGRowTAIA7lxsW+G/pde3/y2Kx6P3339f8+fOVmZmpn3/+2Vlju3VX1rp6BEDRxJM8gRsINbyHvLh2TjlPiRc3O+U8haHAFQxJys3N1Y4dO/Tll19q48aNysvLU9euXdW5c2dnjw8AgDuf+y3BKHjAeOWVV7R582ZZrVZ16NBBU6dO1f3336+SJUsaMT4AAHAHKnDAsFgsmjJlih544AHeOwIAgCO4i+TmZs6cacQ4AAAovtwvX7jjulYAAGC0W1rkCQAACoApEgAA4HRuOF/ghpcMAACMRgUDAACjMUUCAACczv3yBVMkAADA+ahgAABgNKZIAACAs7lhviBgAABgODdMGKzBAAAATkcFAwAAo7lfAYOAAQCA4Uq4X8JgigQAADgdFQwAAIzm4gKGxWJRz5499dprryksLEyvvPKKVq9ene+4sLAwLVmyRJLUrFkzpaen2+3fs2ePypYt61CfBAwAAIzmwrtIsrOzFRUVpaNHj9raxo8fr6ioKNvn06dPq0+fPurbt68kKTU1Venp6dq4caO8vLxsx5UpU8bhfgkYAAAUU4mJiYqKipLVarVrv+uuu3TXXXfZPr/yyit66KGH1LFjR0lSUlKSfH19VaNGjVvumzUYAAAYzeSkrYB27typsLAwrVix4k+P2bZtm3bt2qWRI0fa2hITExUYGFjwDv8HFQwAAIzmpCkSi8Uii8Vi12Y2m2U2m294/FNPPXXTc8bHx6tHjx7y8/OztSUlJSkzM1N9+vTRsWPHVL9+fY0bN65AoYMKBgAAd4gFCxYoNDTUbluwYMEtny8lJUXbt29Xnz597NqTk5N1+fJlvfjii4qNjZWXl5f69eunjIwMh89NBQMAAKM5aY1nRESE+vfvb9f2Z9ULR2zYsEH169fXvffea9e+aNEiXbt2zXbHyFtvvaU2bdpo8+bN6tq1q0PnJmAAAGA0Jz1o66+mQ27Fd999pw4dOty0H09PT/n7+ys1NdXhczNFAgCA0Vy0yPOvWK1W/fjjj2ratGm+9o4dO2rVqlW2tqtXr+rEiRMKCgpy+PxUMAAAcEOnT5/WlStX8k2PmEwmtW3bVu+++66qV6+uSpUqafbs2br77rvVpk0bh89PwAAAwGhF8HXtFy9elCSVL18+377Ro0fLw8NDUVFRysjIUIsWLRQfH6+SJUs6fH6T9Y9P3ygOrqx19QiAoqlsNVePACiCQg3vwbq6s1POY+qx3innKQyswQAAAE7HFAkAAEYrglMkRiNgAABgNPfLF0yRAAAA56OCAQCA0Zz0oK07CQEDAACjueEaDKZIAACA01HBAADAaG5YwSBgAABgNAIGAABwOpP7rUhwvysGAACGo4IBAIDRuE0VAAA4nRuuwWCKBAAAOB0VDAAAjOaGizwJGAAAGI0pEgAAgNtHBQMAAKNxFwkAAHA6N1yD4X5XDAAADEcFAwAAo7nhIk8CBgAARiNgAAAAp2MNBgAAwO2jggEAgNG4TRUAADidG67BYIoEAAA4HRUMAACM5oaLPAkYAAAYjSkSAACA20cFAwAAo3EXCQAAcDo3XIPhflcMAICbsVgs6tKli3bs2GFre+ONN1S3bl27benSpbb969atU8eOHRUcHKzIyEj98ssvBeqTgAEAgNFMJudstyA7O1sjR47U0aNH7dqTkpIUFRWlrVu32rZevXpJkvbv36/x48dryJAhWrFihX777TeNHTu2QP0yRQIAgNFcdBdJYmKioqKiZLVa8+1LSkrSc889J19f33z7li5dqocffliPPvqoJGnGjBlq166dUlJSVKNGDYf6poIBAIDRXFTB2Llzp8LCwrRixQq79oyMDKWmpiogIOCG39u3b5+aNWtm++zn56dq1app3759DvdNBQMAgDuExWKRxWKxazObzTKbzTc8/qmnnrphe1JSkkwmk+bPn69vv/1WFSpUUP/+/dWjRw9J0vnz51WlShW771SuXFnnzp1zeKwEDAAAjFbCORMGCxYs0Ny5c+3ahgwZoqFDhxboPMnJyTKZTAoKCtIzzzyjXbt26bXXXlO5cuX04IMPKisrK19oMZvN+cLNXyFgAABgNCetwYiIiFD//v3t2v6sevFXHn30UbVr104VKlSQJNWrV0/Hjx/Xxx9/rAcffFCenp75woTFYlHp0qUd7oOAAQDAHeKvpkMKwmQy2cLF74KCgrR9+3ZJUtWqVZWWlma3Py0t7YYLQv8MizwBADCaC29TvZHZs2erX79+dm2HDh1SUFCQJCk4OFgJCQm2fWfPntXZs2cVHBzscB8EDAAAjGYq4ZzNSdq1a6ddu3Zp0aJFOnnypD766COtWbNGAwYMkCQ9+eST+uyzz/TJJ5/o0KFDevnll9W2bVuHb1GViugUyS+//KKKFSvK5IZvnwMAwGiNGzfW7NmzNWfOHM2ePVvVq1fX22+/rZCQEElSSEiIJk+erDlz5ujy5ctq1aqVoqOjC9SHyXqjp28UotTUVE2bNk0DBw5UUFCQnnvuOSUkJOjuu+9WXFyc6tWrV/CTXlnr/IECxUHZaq4eAVAEhRreg/Wn4U45j6nhO045T2Fw+RTJxIkT9csvv6hChQpatWqVjhw5ouXLl6t9+/YFTksAABRJRWwNRmFw+RTJ9u3btWrVKvn5+Wnjxo3q0KGDgoODValSJXXp0sXVw8NNWCw56vn0LL02pofCmt0rSUo5fVGvRX+qvfuPq5pfRY0b1V2tW9a1fafb42/r8NGzdudZ+68o1bnXr1DHDhSGs2cvauLE97Rr1yFVqFBWffs+rH79HpYkbd26XzNmfKSUlFQFB9+rCRP6KyiIKhOKB5cHDE9PT2VnZ+vy5cvasWOH3n77bUnSqVOnVL58eRePDn8lO/uaosYt09GkVFub1WpV5Mj3VedeP61cOlwbv/lJQ6Le179XvqxqfhWVm5un4ycvaOk/X1RAzf9/u1PFCmVdcQmA4YYPn61q1Xy0atUbSkw8rVGj5ql6dR8FBPgpIiJGAwd2U9eurfTpp9/o2Wen6D//eVtly3q5ethwNjd8XbvLA0bHjh01fPhweXl5qXz58mrbtq3+/e9/680337Q9shRFT2LyOUWN+yjfC3S270pUyqmLWv7+EJUp7alaQVW1bWeiVn62U0MHddKp07/o2rVcNW54jzw9S7lo9EDhuHw5Q3v3Jio6+gUFBPgpIMBP4eGNtW3bT9q27SeFhNTWSy89JkkaPfpJffPNf7V27fd64okOLh45nO4Om95wBpdHqokTJ+qJJ57Q3/72N33wwQe2p4cNGjRII0eOdPXw8Cd2JiQrrFktrXjf/vG0+348qQb1qqtMaU9bW2iTAO3df0KSlHgsVX5VKxAu4Ba8vMwqXdpTq1Zt0bVrOUpOPqM9e46ofv0ApaScV+PG99qONZlMqlOnhvbuPfoXZ8QdizUYLhiAh4ftYR+XL19WXl6eunfvzi2qRdxTj91/w/YLab+piq/91Fblynfp3PnLkqSkY6kqVaqkIoYt0k8/n1JgTV+9PLyLGje8x/AxA4XN09OsCRP6KTr6fS1Z8h/l5uapZ88H9Nhj7bRnz2Glpv5id/y5cxdVvnw5F40WcC6XVzCsVqvi4uIUFhamli1b6vTp0xo9erQmTJhQoJeqoGjIzLoms7mkXZu5lIcslhxJ0rFj53X5t0w91iNM8XOeU62gqnp20AKdPXfJBaMFjJeUdEbt2jXVihWTNXVqhP7zn536/POtevjhltqwYYc2b96jnJxcrV79rX78MVnXruW4esgwQokSztnuIC6vYMybN0/r16/XtGnTNGLECElSjx49NGHCBM2YMUOvvvqqi0eIgvA0e+jS5T+8IOdajry8rj87P/q1x5SVdU3lyl1fxDaxXnXt2Xtcn61P0KDnmHdG8bJt20/69NPN2rJlrry8zGrUKEipqb8qLm6NvvjiLUVG9tLQoe8oNzdXYWEN1L17uDIyrrp62DCE+1XlXR6HVq9ercmTJ6tdu3a2aZFWrVpp+vTp+uKLL1w8OhRU1SrllXbxN7u2tLR0VfG5S5Lk4VHSFi6k6/POQYG+Sv2/KRSgOPnpp2OqWfNuW8CWpAYNaurMmesvkXrxxUe1Z88ibd0aq/ffH68rVzJVvbrjL5MCijKXB4yLFy+qSpUq+dq9vb119SpJ/k4T3OgeHTh0WllZ12xtCXuPKbhRTUlSn4FxmrvgS9u+vLw8HT56VkGB+f8ZAO50VapU1IkT52xThJKUnHxG/v6+WrfuB02ZskRmcylVrlxeWVkW7dhxUGFhDVw4YhjGDRd5ujxgtGjRQosWLbJry8jI0MyZMxUWFuaiUeFWNQ+tJb+qFTR24godTTqn+MVfa/+BFPV+tLkkqf0DDfT+sm+1acsBJR8/r8nTVys9PUs9ujZz8cgB52vfvqlKlfLQq6/G69ixs/r66wTNn/+Z+vR5SAEBd2v58k368sudOn78rKKi5srPr7IeeMDxt1XiDlLEXnZWGFzyLpKnnnpK0dHRqlWrls6dO6chQ4bo7Nmz+vXXX1WrVi2dOXNG1apVU1xcnPz9/QveAe8iKVR1m47SkvhBtid5njiZpvGT/6V9P51UzRqVNW5Ud90fVkfS9UW9C977WitWblPaLxkKbniPJrzSg6d4FhbeRVLoEhNPacqUJdq/P0mVKnnr6af/rmeffUgmk0krV36jefNW69KlDLVseZ9ef72/qlSp6Oohu6FCeBdJ4ninnMd07xSnnKcwuCRg9O/fX7t379aAAQMUGRkps9msbdu2KTk5WTk5OQoMDFTr1q1V4lZXzBIwgBsjYAA3UBgBwzk3LJjufcMp5ykMLnub6pdffqlp06bJw8NDEydO1P333/i5CreEgAHcGAEDuIFCCBhJrznlPKZad85LQF12m+rf//53tWnTRv/85z81ZMgQtW/fXpGRkfL09LQ7rlo1/oUIAMCdxqXPwfD09NSQIUNUr149DR8+XOvXr7fts1qtMplM+vnnn104QgAAnOAOW6DpDC4NGKdPn9aMGTP01VdfqUuXLoqIiJCXF28RBAAUN3fWLabO4JKAkZ2drfnz52vx4sWqUaOGlixZombNuE0RAFBM3WHPsHAGlwSMTp06KSMjQ8OHD1efPn1UsmTJm38JAADcMVwSMEJDQzVmzJgbPsETAIDihzUYheLtt992RbcAALiGG06RuF+kAgAAhnP569oBACj23LCCQcAAAMBw7hcwmCIBAABORwUDAACj8SRPAADgdG64BsP9IhUAADAcFQwAAAznfhUMAgYAAEZjDQYAAHA2E2swAAAAbh8BAwAAw5mctN0ai8WiLl26aMeOHba2vXv36oknnlBISIg6deqkTz75xO473bp1U926de22I0eOONwnUyQAABjNhWswsrOzFRUVpaNHj9raLly4oBdeeEFPPvmkpk2bpgMHDmjs2LHy9fVV27ZtlZubq+PHj2vp0qUKCAiwfa9ixYoO90vAAACgmEpMTFRUVJSsVqtd+8aNG+Xj46ORI0dKkgICArRjxw6tXbtWbdu21alTp3Tt2jU1btxYnp6et9Q3AQMAAMO5ZpHnzp07FRYWphEjRqhJkya29vDwcNWvXz/f8RkZGZKuBxM/P79bDhcSAQMAAOM56S4Si8Uii8Vi12Y2m2U2m294/FNPPXXDdn9/f/n7+9s+X7x4UevXr9fQoUMlSUlJSSpVqpQiIiL0008/KTAwUC+//LIaN27s8FhZ5AkAwB1iwYIFCg0NtdsWLFhwW+fMysrS0KFD5ePjo8cff1ySdOzYMV2+fFmPPfaY4uPjVatWLT377LM6e/asw+c1Wf84MVMcXFnr6hEARVPZaq4eAVAEhRrfxbm5TjmNpdLAAlUw/lfdunW1ZMkShYWF2dquXLmiwYMH6+jRo/roo49sCzpzcnKUlZWlcuXKSZKsVqu6deumzp07a9CgQQ6NlSkSAAAM55wpEkfDhCMyMjL0/PPP6+TJk/rggw/s7hbx8PCwhQvp+oPCgoKClJqa6vD5mSIBAMDN5OXlaciQITp16pQ+/PBD1a5d225/nz59NHfuXLvjDx8+rKCgIIf7oIIBAIDRitijwj/99FPt2LFDcXFx8vb21oULFyRJpUqVUoUKFdS+fXvNmzdP9evXV2BgoJYsWaL09HT16NHD4T4IGAAAGK2Ivexsw4YNysvLU0REhF178+bN9eGHH6pfv37Kzs7WG2+8obS0NAUHB2vx4sV20yY3wyJPwJ2wyBO4gUJY5Hn+9u70sKkScfNjioiiFakAAECxwBQJAABGK2JrMAoDAQMAAMO534SB+10xAAAwHBUMAACMxhQJAABwOjcMGEyRAAAAp6OCAQCA4dzv9zwBAwAAozFFAgAAcPuoYAAAYDj3q2AQMAAAMFoRe9lZYSBgAABgNNZgAAAA3D4qGAAAGM79KhgEDAAAjOaGazDc74oBAIDhqGAAAGA4pkgAAICzcRcJAADA7aOCAQCA4dzv9zwBAwAAozFFAgAAcPuoYAAAYDQ3fA4GAQMAAMO53xQJAQMAAKOxBgMAAOD2UcEAAMBw7vd7noABAIDRmCIBAAC4fVQwAAAwnPv9nne/KwYAoLCZTM7ZbpHFYlGXLl20Y8cOW1tKSor69eunJk2a6JFHHtHWrVvtvvPDDz+oS5cuCg4OVt++fZWSklKgPgkYAAAUY9nZ2Ro5cqSOHj1qa7NarYqMjJSPj49Wrlyp7t27a8iQITpz5owk6cyZM4qMjFTPnj316aefqlKlSho8eLCsVqvD/RIwAAAwmosqGImJifrHP/6hkydP2rVv375dKSkpmjx5smrVqqWIiAg1adJEK1eulCR98sknatiwoQYMGKDatWtr6tSpOn36tHbu3Olw3wQMAAAMV8JJW8Hs3LlTYWFhWrFihV37vn371KBBA5UpU8bWFhoaqr1799r2N2vWzLavdOnSuu+++2z7HcEiTwAA7hAWi0UWi8WuzWw2y2w23/D4p5566obtFy5cUJUqVezaKleurHPnzjm03xFUMAAAMJqTpkgWLFig0NBQu23BggUFHk5mZma+UGI2m23h5Wb7HUEFAwAAwznnQVsRERHq37+/XdufVS/+iqenpy5dumTXZrFY5OXlZdv/xzBhsVjk7e3tcB8EDAAAjOak17X/1XRIQVStWlWJiYl2bWlpabZpkapVqyotLS3f/vr16zvcB1MkAAC4meDgYB04cEBZWVm2toSEBAUHB9v2JyQk2PZlZmbq4MGDtv2OIGAAAGA4k5M252jevLn8/Pw0duxYHT16VPHx8dq/f7969+4tSerVq5f27Nmj+Ph4HT16VGPHjpW/v7/CwsIc7oOAAQCA0UwlnLM5ScmSJRUbG6sLFy6oZ8+e+vzzzzVv3jxVq1ZNkuTv7693331XK1euVO/evXXp0iXNmzdPpgI8i8NkLchjue4UV9a6egRA0VS2mqtHABRBocZ3cW2Lc85Tqo1zzlMIWOQJAIDh3O917QQMAACMdhsvKrtTsQYDAAA4HRUMAACM5sQFmncKAgYAAIZjigQAAOC2UcEAAMBobrjIk4ABAIDh3G/CgIABAIDR3LCC4X6RCgAAGI4KBgAAhnO/3/MEDAAAjMYUCQAAwO0rnm9TBQAALkUFAwAAOB0BAwAAOB0BAwAAOB0BAwAAOB0BAwAAOB0BAwAAOB0BAwAAOB0BAwAAOB0BAwAAOB0BA7etbt26ioqKyte+atUqtW/f3gUjAlxj5MiRatOmjTIzM/Pt69+/v5544gnx8GS4CwIGnGLdunXatm2bq4cBuNSYMWOUnp6u+fPn27V/+eWX2rVrlyZPniyTG770Cu6JgAGnqF69uiZPniyLxeLqoQAuU7VqVQ0dOlSLFy9WSkqKJCkrK0vTpk1T//79VadOHRePECg8BAw4xfDhw5WamqpFixb96THnzp3TSy+9pObNmyssLExvvPEGgQTFTp8+fVSzZk3FxMRIkhYuXKgSJUooMjJSZ8+e1aBBgxQcHKz27dtr7ty5ys3NlSRdu3ZNr776qsLCwhQSEqJBgwYpNTXVlZcC3BYCBpyiatWqGjZsmObPn2/75fa/LBaLnn32WWVmZurDDz/UO++8o2+++UYzZsxwwWgB43h4eGjChAn68ssvtXHjRi1atEivv/66PD09NWTIEFWuXFmrV6/W1KlTtXbtWtt0yrJly7Rr1y699957+vTTT3XlyhW9+eabLr4a4NYRMOA0v/9ymzJlSr593333nVJTUxUTE6O6deuqZcuWmjBhgj7++GNduXLFBaMFjPO3v/1NXbt21UsvvaR27dopPDxc27dv15kzZxQdHa2goCCFhYVpzJgxWrJkiSTp1KlT8vT0VPXq1VWrVi1NmzZNAwcOdPGVALfOw9UDQPFRsmRJTZw4UU899ZQ2btxoty8pKUkBAQEqX768ra1p06bKycnRyZMnVb9+/cIeLmCoQYMG6fPPP1dkZKSk638GLl26pNDQUNsxeXl5ysrK0q+//qrHH39c69evV+vWrdW8eXN17NhRPXv2dNXwgdtGwIBTNW3aVL169dKUKVP0/PPP29o9PT3zHfv73PPv/wsUJ7//M//7/+bk5CgoKEixsbH5jr3rrrtUsWJFff311/rmm2/0zTffaObMmVq3bp2WLVvGnSe4IzFFAqcbNWqUrl69arfgMzAwUMePH9elS5dsbXv37pWHh4fuueceF4wSKFyBgYE6c+aMKlWqpJo1a6pmzZo6deqU5syZI5PJpDVr1mjz5s16+OGHNX36dC1cuFAJCQm6ePGiq4cO3BICBpyuYsWKGjVqlE6fPm1ra9WqlWrUqKGXX35Zhw8f1vbt2xUdHa0uXbrI29vbhaMFCkfr1q1VvXp1jR49WocPH9bu3bv12muvqXTp0ipZsqTS09M1ZcoUbdu2TSkpKVq7dq3uvvtuVaxY0dVDB24JUyQwRO/evbVy5UqdP39e0vX1GbGxsYqOjtY//vEPlS1bVl27dtXIkSNdPFKgcJQsWVJxcXG2PwNlypTRQw89pDFjxkiSnn76aZ07d06jR4/W5cuX1bBhQ8XFxalkyZIuHjlwa0xWnlsLAACcjCkSAADgdAQMAADgdAQMAADgdAQMAADgdAQMAADgdAQMAADgdAQMAADgdAQMoBjKyMjQmjVr8rWnpKSobt26Gj16dOEPCoBbIWAAxdD777+vlStX5mv/97//rXvuuUcbN27UlStXXDAyAO6CgAEUQ3/2gN5169bpmWeeUalSpbRhw4ZCHhUAd0LAAG7DiRMn9NxzzykkJERt27bVkiVLtGPHDtWtW9fuuFdeeUWvvPKKJOndd9/V4MGD9fTTT6t58+bauXOn2rdvr5iYGLVu3VqPPvqorFarjhw5oj59+qhx48bq1KmTli1bZjvfu+++q6ioKL3++utq2rSpWrZsqX/+85+SpFWrVmnu3LnauXOn3TgSExN15MgRhYWFKTw8XKtXr843xqlTp2r48OEKDg5WmzZt7KZZtm3bpu7du6tRo0bq0KGDli9fLkl68cUXNX36dNtxr776qtq1a2f7vHXrVrVp00aS9Ntvv2n06NFq2rSpWrdurejoaGVlZUmSduzYofbt2+v1119XaGio4uPjb/nvCwDXI2AAtyg7O1sDBgxQ2bJl9a9//UsTJkzQrFmzdPXq1Zt+d9OmTerSpYs++OADNW7cWJK0du1aLVq0SNOmTVN2drZeeOEFhYaG6vPPP9eYMWMUGxtr9x/8DRs2yNPTU6tXr9Zzzz2nt956S8eOHdMjjzyiAQMGKCQkRFu3brUdv27dOlWvXl316tVThw4dtGvXLrs33krSsmXLdN9992ndunX6+9//rtdff13p6enKzc3V8OHD9dBDD+mLL77QSy+9pEmTJikxMVGtW7fWjh07bOfYtWuXzp49q3PnzkmSvv/+e7Vu3VqSNH78eKWnp+vjjz9WbGysfvzxR02ePNn23dOnT8tisWjVqlXq0qVLwf+mACgyCBjALdq6dat++eUXvfnmm6pdu7bat2+vV199VSVK3PyPlY+Pj5588knVr19fXl5ekqRu3bqpbt26qlevntauXavKlStr+PDhCggIUPv27TVo0CAtWbLEdo4KFSpozJgxqlmzpp5//nlVqFBBP/30k7y8vFSmTBmVKlVKvr6+tuP//e9/q3379pKkNm3ayGw251sIWrduXb3wwguqUaOGXnrpJWVlZeno0aNKT0/XpUuX5OPjI39/f3Xr1k2LFy+Wr6+vWrdurUOHDik9PV0XLlzQpUuXFBwcrD179ki6XvkIDw/XyZMntXHjRsXExKhu3bpq3LixoqOjtXr1aqWnp9vG8Pzzz6tmzZqqVq3aLf+9AeB6vK4duEXHjh1TYGCgypUrZ2vr1auX3a/5P1O9evW/bEtOTtahQ4cUEhJia8vNzbV7dbe/v7/d57JlyyonJ+eG/e3fv18nTpxQx44dbcfef//9+uyzzxQZGWk7LiAgwPb/f7+unJwcVahQQU8++aReffVVxcbGql27durVq5fKly+v8uXLq1q1atq9e7cyMzMVEhKigIAAJSQkqEWLFkpMTNT999+vhIQE5eXl6YEHHrAbW15enk6cOGF3XQDufAQM4BZ5eNz4j4/JZMrXlpOTY3e8p6dnvmP+ty0nJ0ctW7bUhAkT/rT/UqVK5Wv7s8Wd69evlyQNGDDA1paXlyer1aqEhASFhobe9JwTJ07U008/rY0bN2rjxo1asWKFYmNj1aZNG7Vq1Uo7d+5Udna2mjZtqsDAQMXGxmr79u1q1KiRvL29lZubq7vuuuuGd7dUrVpV+/bt+9O/NgDuPEyRALcoICBAJ06cUGZmpq1t+vTpiouLk3T9WRS/O3XqVIHOHRgYqGPHjsnf3181a9ZUzZo1tXfvXn344YcOff9/Q05eXp6++OILde/eXWvWrLFtq1evVrly5W74vIw/unDhgiZNmqSaNWvqxRdf1MqVK9WiRQt9/fXXkqTw8HDt3LlTe/bsUbNmzRQaGqojR45ow4YNCg8Pt11Tenq6TCaT7ZqysrI0Y8YMWSyWAv31AVD0ETCAW9S6dWv5+PhowoQJSkpK0qZNm7R8+XI9/fTT8vLy0vz585WSkqKFCxfq4MGDBTp3t27dlJWVZTv3li1bNGXKFFWuXNmh75cuXVrnz5/XqVOntHv3bqWmpqpPnz6qU6eObatfv766deumL774QtnZ2X95vvLly+urr77Sm2++qZMnT2rXrl06dOiQGjRoIElq0aKFjhw5ohMnTqhhw4aqVKmS7rnnHruAUatWLYWHh2vUqFHav3+/Dhw4oLFjx+rq1avy9vYu0F8fAEUfAQO4RR4eHoqNjdX58+fVo0cPTZkyRS+//LI6duyo6OhorV+/Xl26dNGhQ4f09NNPF+jc5cqV0z//+U8dP35cjz76qF599VU9/fTTioiIcOj7Dz74oPLy8tS5c2etXr1adevWVaNGjfId9+STTyo9PV0bN278y/OZzWbFxsbq0KFD6tatm4YPH67evXvrscces423UaNGatCggcxmsySpWbNmqlixoho2bGg7z4wZM+Tv769+/fqpf//+CgwM1MyZMx39ywLgDmKy/tmkLQAAwC2iggEAAJyOgAEAAJyOgAEAAJyOgAEAAJyOgAEAAJyOgAEAAJyOgAEAAJyOgAEAAJyOgAEAAJyOgAEAAJyOgAEAAJyOgAEAAJzu/wF3gIRGOkMFJQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.heatmap(pd.crosstab(tools_superforcaster['vote'], tools_superforcaster['currentAnswer']), \n",
" annot=True, \n",
" fmt='d', \n",
" cmap='YlOrRd')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"error\n",
"0 1080\n",
"Name: count, dtype: int64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools_superforcaster.error.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"tools_errors = tools.loc[tools[\"error\"]==1]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>request_id</th>\n",
" <th>request_block</th>\n",
" <th>prompt_request</th>\n",
" <th>tool</th>\n",
" <th>nonce</th>\n",
" <th>trader_address</th>\n",
" <th>deliver_block</th>\n",
" <th>error</th>\n",
" <th>error_message</th>\n",
" <th>prompt_response</th>\n",
" <th>...</th>\n",
" <th>confidence</th>\n",
" <th>info_utility</th>\n",
" <th>vote</th>\n",
" <th>win_probability</th>\n",
" <th>market_creator</th>\n",
" <th>title</th>\n",
" <th>currentAnswer</th>\n",
" <th>request_time</th>\n",
" <th>request_month_year</th>\n",
" <th>request_month_year_week</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>86</th>\n",
" <td>4881674922867639641311571037228957716478871650...</td>\n",
" <td>35999601</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>717e6b3a-fb8e-46b8-b08f-09b7688bd3f5</td>\n",
" <td>0x75c0366bd0cbc3db434fd117267e32f26c5ed857</td>\n",
" <td>35999619</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>quickstart</td>\n",
" <td>Will Jalen Ramsey remain the highest-paid corn...</td>\n",
" <td>Yes</td>\n",
" <td>2024-09-14 16:36:10</td>\n",
" <td>2024-09</td>\n",
" <td>2024-09-09/2024-09-15</td>\n",
" </tr>\n",
" <tr>\n",
" <th>150</th>\n",
" <td>1635603471143500367687547686004256739020540606...</td>\n",
" <td>36085486</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>906015ba-4b44-4f16-865b-a78ec20fbd43</td>\n",
" <td>0x9373cb196a3542afa583a91db604aee92068552a</td>\n",
" <td>36085552</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td>None</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>quickstart</td>\n",
" <td>Will the DNA-based storage technology develope...</td>\n",
" <td>No</td>\n",
" <td>2024-09-19 19:04:55</td>\n",
" <td>2024-09</td>\n",
" <td>2024-09-16/2024-09-22</td>\n",
" </tr>\n",
" <tr>\n",
" <th>171</th>\n",
" <td>9605346928838243745282196096485039029835957400...</td>\n",
" <td>36153230</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>03dea35f-4e35-4d2d-9a6c-8f47e22fbeac</td>\n",
" <td>0x61766a46659b67bbda5484bba45e524ccc652ee4</td>\n",
" <td>36153243</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>quickstart</td>\n",
" <td>Will the DJI Air 3S drone be launched on or by...</td>\n",
" <td>No</td>\n",
" <td>2024-09-23 19:36:20</td>\n",
" <td>2024-09</td>\n",
" <td>2024-09-23/2024-09-29</td>\n",
" </tr>\n",
" <tr>\n",
" <th>302</th>\n",
" <td>8665095948962365369308240696967816065773728349...</td>\n",
" <td>36242586</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>f359963a-595c-44e0-bd26-0e9d7fd7eb55</td>\n",
" <td>0x839eaee319420e6dc83383bbb41fce4f8b0bb9aa</td>\n",
" <td>36242602</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>quickstart</td>\n",
" <td>Will New York Mayor Eric Adams resign due to t...</td>\n",
" <td>No</td>\n",
" <td>2024-09-29 03:27:40</td>\n",
" <td>2024-09</td>\n",
" <td>2024-09-23/2024-09-29</td>\n",
" </tr>\n",
" <tr>\n",
" <th>320</th>\n",
" <td>8760585200747573871316640694310284358194695510...</td>\n",
" <td>36031841</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>12bd33ad-88f6-4792-833b-b9bd22d8fe60</td>\n",
" <td>0x1d942103400c1f1657dcbffd5e08904787ea936b</td>\n",
" <td>36031861</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>quickstart</td>\n",
" <td>Will the Miami Dolphins win their game on 18 S...</td>\n",
" <td>No</td>\n",
" <td>2024-09-16 14:30:55</td>\n",
" <td>2024-09</td>\n",
" <td>2024-09-16/2024-09-22</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 23 columns</p>\n",
"</div>"
],
"text/plain": [
" request_id request_block \\\n",
"86 4881674922867639641311571037228957716478871650... 35999601 \n",
"150 1635603471143500367687547686004256739020540606... 36085486 \n",
"171 9605346928838243745282196096485039029835957400... 36153230 \n",
"302 8665095948962365369308240696967816065773728349... 36242586 \n",
"320 8760585200747573871316640694310284358194695510... 36031841 \n",
"\n",
" prompt_request \\\n",
"86 Please take over the role of a Data Scientist ... \n",
"150 Please take over the role of a Data Scientist ... \n",
"171 Please take over the role of a Data Scientist ... \n",
"302 Please take over the role of a Data Scientist ... \n",
"320 Please take over the role of a Data Scientist ... \n",
"\n",
" tool nonce \\\n",
"86 prediction-request-reasoning 717e6b3a-fb8e-46b8-b08f-09b7688bd3f5 \n",
"150 prediction-request-reasoning 906015ba-4b44-4f16-865b-a78ec20fbd43 \n",
"171 prediction-request-reasoning 03dea35f-4e35-4d2d-9a6c-8f47e22fbeac \n",
"302 prediction-request-reasoning f359963a-595c-44e0-bd26-0e9d7fd7eb55 \n",
"320 prediction-request-reasoning 12bd33ad-88f6-4792-833b-b9bd22d8fe60 \n",
"\n",
" trader_address deliver_block error \\\n",
"86 0x75c0366bd0cbc3db434fd117267e32f26c5ed857 35999619 1 \n",
"150 0x9373cb196a3542afa583a91db604aee92068552a 36085552 1 \n",
"171 0x61766a46659b67bbda5484bba45e524ccc652ee4 36153243 1 \n",
"302 0x839eaee319420e6dc83383bbb41fce4f8b0bb9aa 36242602 1 \n",
"320 0x1d942103400c1f1657dcbffd5e08904787ea936b 36031861 1 \n",
"\n",
" error_message prompt_response ... confidence info_utility \\\n",
"86 Response parsing error ... NaN NaN \n",
"150 Response parsing error None ... NaN NaN \n",
"171 Response parsing error ... NaN NaN \n",
"302 Response parsing error ... NaN NaN \n",
"320 Response parsing error ... NaN NaN \n",
"\n",
" vote win_probability market_creator \\\n",
"86 None NaN quickstart \n",
"150 None NaN quickstart \n",
"171 None NaN quickstart \n",
"302 None NaN quickstart \n",
"320 None NaN quickstart \n",
"\n",
" title currentAnswer \\\n",
"86 Will Jalen Ramsey remain the highest-paid corn... Yes \n",
"150 Will the DNA-based storage technology develope... No \n",
"171 Will the DJI Air 3S drone be launched on or by... No \n",
"302 Will New York Mayor Eric Adams resign due to t... No \n",
"320 Will the Miami Dolphins win their game on 18 S... No \n",
"\n",
" request_time request_month_year request_month_year_week \n",
"86 2024-09-14 16:36:10 2024-09 2024-09-09/2024-09-15 \n",
"150 2024-09-19 19:04:55 2024-09 2024-09-16/2024-09-22 \n",
"171 2024-09-23 19:36:20 2024-09 2024-09-23/2024-09-29 \n",
"302 2024-09-29 03:27:40 2024-09 2024-09-23/2024-09-29 \n",
"320 2024-09-16 14:30:55 2024-09 2024-09-16/2024-09-22 \n",
"\n",
"[5 rows x 23 columns]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools_errors.head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"market_creator\n",
"quickstart 2581\n",
"pearl 291\n",
"Name: count, dtype: int64"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools_errors.market_creator.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"tools_errors_pearl = tools_errors.loc[tools_errors[\"market_creator\"]==\"pearl\"]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tool\n",
"prediction-request-reasoning 173\n",
"prediction-offline-sme 83\n",
"prediction-request-reasoning-claude 20\n",
"prediction-request-rag 7\n",
"prediction-request-rag-claude 5\n",
"prediction-online-sme 2\n",
"claude-prediction-offline 1\n",
"Name: count, dtype: int64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools_errors_pearl.tool.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"tools_errors_pearl_reasoning = tools_errors_pearl.loc[tools_errors_pearl[\"tool\"]==\"prediction-request-reasoning\"]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"error_message\n",
"Response parsing error 173\n",
"Name: count, dtype: int64"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools_errors_pearl_reasoning.error_message.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"request_month_year_week\n",
"2024-08-19/2024-08-25 54\n",
"2024-10-07/2024-10-13 53\n",
"2024-09-02/2024-09-08 33\n",
"2024-09-23/2024-09-29 12\n",
"2024-09-09/2024-09-15 12\n",
"2024-08-26/2024-09-01 5\n",
"2024-09-30/2024-10-06 4\n",
"Name: count, dtype: int64"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools_errors_pearl_reasoning.request_month_year_week.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"tools_errors_pearl_reasoning_oct = tools_errors_pearl_reasoning.loc[tools_errors_pearl_reasoning[\"request_month_year_week\"]==\"2024-10-07/2024-10-13\"]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>request_id</th>\n",
" <th>request_block</th>\n",
" <th>prompt_request</th>\n",
" <th>tool</th>\n",
" <th>nonce</th>\n",
" <th>trader_address</th>\n",
" <th>deliver_block</th>\n",
" <th>error</th>\n",
" <th>error_message</th>\n",
" <th>prompt_response</th>\n",
" <th>...</th>\n",
" <th>confidence</th>\n",
" <th>info_utility</th>\n",
" <th>vote</th>\n",
" <th>win_probability</th>\n",
" <th>market_creator</th>\n",
" <th>title</th>\n",
" <th>currentAnswer</th>\n",
" <th>request_time</th>\n",
" <th>request_month_year</th>\n",
" <th>request_month_year_week</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1301</th>\n",
" <td>6096315197620058968806130972169678143719505006...</td>\n",
" <td>36413260</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>f2016229-4284-4178-ba31-6d3d79c08db2</td>\n",
" <td>0x04430ebfb7d088960233b7353cb4cefb528dc31e</td>\n",
" <td>36413276</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>pearl</td>\n",
" <td>Will Rivian produce more electric vehicles in ...</td>\n",
" <td>No</td>\n",
" <td>2024-10-09 07:16:50</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-07/2024-10-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4446</th>\n",
" <td>5354600326067223816020518930816563773467758113...</td>\n",
" <td>36403643</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>c74f8eb6-5570-4258-b86b-6e92eca1a09b</td>\n",
" <td>0x04430ebfb7d088960233b7353cb4cefb528dc31e</td>\n",
" <td>36403657</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>pearl</td>\n",
" <td>Will the Dyson WashG1 wet floor cleaner reach ...</td>\n",
" <td>No</td>\n",
" <td>2024-10-08 17:32:55</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-07/2024-10-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4482</th>\n",
" <td>6150779611250311931991788339674513841446857824...</td>\n",
" <td>36490063</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>3bb89890-6b83-4788-94f8-e7eacf6ea121</td>\n",
" <td>0x8069ea45a18910fa493a6a736438971b0e59ec9b</td>\n",
" <td>36490078</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>pearl</td>\n",
" <td>Will Biden speak to Netanyahu about Iran retal...</td>\n",
" <td>Yes</td>\n",
" <td>2024-10-13 20:56:30</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-07/2024-10-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5281</th>\n",
" <td>2629357539419898379977886858224971150345341996...</td>\n",
" <td>36396729</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>858c4497-836e-43e8-b234-868d3d542f0d</td>\n",
" <td>0x04430ebfb7d088960233b7353cb4cefb528dc31e</td>\n",
" <td>36396742</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>pearl</td>\n",
" <td>Will the Dyson WashG1 wet floor cleaner reach ...</td>\n",
" <td>No</td>\n",
" <td>2024-10-08 07:38:25</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-07/2024-10-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5978</th>\n",
" <td>6657538643069097666675831403759282242594505545...</td>\n",
" <td>36405500</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>cb9b0663-3eea-43ec-b791-43f3d5946f91</td>\n",
" <td>0x04430ebfb7d088960233b7353cb4cefb528dc31e</td>\n",
" <td>36405513</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>pearl</td>\n",
" <td>Will Rivian produce more electric vehicles in ...</td>\n",
" <td>No</td>\n",
" <td>2024-10-08 20:10:45</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-07/2024-10-13</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 23 columns</p>\n",
"</div>"
],
"text/plain": [
" request_id request_block \\\n",
"1301 6096315197620058968806130972169678143719505006... 36413260 \n",
"4446 5354600326067223816020518930816563773467758113... 36403643 \n",
"4482 6150779611250311931991788339674513841446857824... 36490063 \n",
"5281 2629357539419898379977886858224971150345341996... 36396729 \n",
"5978 6657538643069097666675831403759282242594505545... 36405500 \n",
"\n",
" prompt_request \\\n",
"1301 Please take over the role of a Data Scientist ... \n",
"4446 Please take over the role of a Data Scientist ... \n",
"4482 Please take over the role of a Data Scientist ... \n",
"5281 Please take over the role of a Data Scientist ... \n",
"5978 Please take over the role of a Data Scientist ... \n",
"\n",
" tool nonce \\\n",
"1301 prediction-request-reasoning f2016229-4284-4178-ba31-6d3d79c08db2 \n",
"4446 prediction-request-reasoning c74f8eb6-5570-4258-b86b-6e92eca1a09b \n",
"4482 prediction-request-reasoning 3bb89890-6b83-4788-94f8-e7eacf6ea121 \n",
"5281 prediction-request-reasoning 858c4497-836e-43e8-b234-868d3d542f0d \n",
"5978 prediction-request-reasoning cb9b0663-3eea-43ec-b791-43f3d5946f91 \n",
"\n",
" trader_address deliver_block error \\\n",
"1301 0x04430ebfb7d088960233b7353cb4cefb528dc31e 36413276 1 \n",
"4446 0x04430ebfb7d088960233b7353cb4cefb528dc31e 36403657 1 \n",
"4482 0x8069ea45a18910fa493a6a736438971b0e59ec9b 36490078 1 \n",
"5281 0x04430ebfb7d088960233b7353cb4cefb528dc31e 36396742 1 \n",
"5978 0x04430ebfb7d088960233b7353cb4cefb528dc31e 36405513 1 \n",
"\n",
" error_message prompt_response ... confidence info_utility \\\n",
"1301 Response parsing error ... NaN NaN \n",
"4446 Response parsing error ... NaN NaN \n",
"4482 Response parsing error ... NaN NaN \n",
"5281 Response parsing error ... NaN NaN \n",
"5978 Response parsing error ... NaN NaN \n",
"\n",
" vote win_probability market_creator \\\n",
"1301 None NaN pearl \n",
"4446 None NaN pearl \n",
"4482 None NaN pearl \n",
"5281 None NaN pearl \n",
"5978 None NaN pearl \n",
"\n",
" title currentAnswer \\\n",
"1301 Will Rivian produce more electric vehicles in ... No \n",
"4446 Will the Dyson WashG1 wet floor cleaner reach ... No \n",
"4482 Will Biden speak to Netanyahu about Iran retal... Yes \n",
"5281 Will the Dyson WashG1 wet floor cleaner reach ... No \n",
"5978 Will Rivian produce more electric vehicles in ... No \n",
"\n",
" request_time request_month_year request_month_year_week \n",
"1301 2024-10-09 07:16:50 2024-10 2024-10-07/2024-10-13 \n",
"4446 2024-10-08 17:32:55 2024-10 2024-10-07/2024-10-13 \n",
"4482 2024-10-13 20:56:30 2024-10 2024-10-07/2024-10-13 \n",
"5281 2024-10-08 07:38:25 2024-10 2024-10-07/2024-10-13 \n",
"5978 2024-10-08 20:10:45 2024-10 2024-10-07/2024-10-13 \n",
"\n",
"[5 rows x 23 columns]"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools_errors_pearl_reasoning_oct.head()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"title\n",
"Will Rivian produce more electric vehicles in 2024 than it did in 2023 by 11 October 2024? 27\n",
"Will the Dyson WashG1 wet floor cleaner reach a sales target of 500,000 units in the US by 10 October 2024? 25\n",
"Will Biden speak to Netanyahu about Iran retaliation on 16 October 2024? 1\n",
"Name: count, dtype: int64"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools_errors_pearl_reasoning_oct.title.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"title trader_address \n",
"Will Biden speak to Netanyahu about Iran retaliation on 16 October 2024? 0x8069ea45a18910fa493a6a736438971b0e59ec9b 1\n",
"Will Rivian produce more electric vehicles in 2024 than it did in 2023 by 11 October 2024? 0x032533005f65026fa7f360ff9a211bc94315325d 5\n",
" 0x04430ebfb7d088960233b7353cb4cefb528dc31e 18\n",
" 0x4b9e1890640e5f56f7fdc580347c938aaab56c25 1\n",
" 0x75c10935141d740b71e1763aa6a3139643754655 1\n",
" 0x9db7e7a0c82a229a7f3bb15046ff0c3a778b7291 1\n",
" 0xcbb7f0dc4daac0654d6f18638b4416666a01dff2 1\n",
"Will the Dyson WashG1 wet floor cleaner reach a sales target of 500,000 units in the US by 10 October 2024? 0x032533005f65026fa7f360ff9a211bc94315325d 4\n",
" 0x04430ebfb7d088960233b7353cb4cefb528dc31e 21\n",
"Name: request_id, dtype: int64"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools_errors_pearl_reasoning_oct.groupby([\"title\",\"trader_address\"])[\"request_id\"].count()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>request_id</th>\n",
" <th>request_block</th>\n",
" <th>prompt_request</th>\n",
" <th>tool</th>\n",
" <th>nonce</th>\n",
" <th>trader_address</th>\n",
" <th>deliver_block</th>\n",
" <th>error</th>\n",
" <th>error_message</th>\n",
" <th>prompt_response</th>\n",
" <th>...</th>\n",
" <th>confidence</th>\n",
" <th>info_utility</th>\n",
" <th>vote</th>\n",
" <th>win_probability</th>\n",
" <th>market_creator</th>\n",
" <th>title</th>\n",
" <th>currentAnswer</th>\n",
" <th>request_time</th>\n",
" <th>request_month_year</th>\n",
" <th>request_month_year_week</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1301</th>\n",
" <td>6096315197620058968806130972169678143719505006...</td>\n",
" <td>36413260</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>f2016229-4284-4178-ba31-6d3d79c08db2</td>\n",
" <td>0x04430ebfb7d088960233b7353cb4cefb528dc31e</td>\n",
" <td>36413276</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>pearl</td>\n",
" <td>Will Rivian produce more electric vehicles in ...</td>\n",
" <td>No</td>\n",
" <td>2024-10-09 07:16:50</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-07/2024-10-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4446</th>\n",
" <td>5354600326067223816020518930816563773467758113...</td>\n",
" <td>36403643</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>c74f8eb6-5570-4258-b86b-6e92eca1a09b</td>\n",
" <td>0x04430ebfb7d088960233b7353cb4cefb528dc31e</td>\n",
" <td>36403657</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>pearl</td>\n",
" <td>Will the Dyson WashG1 wet floor cleaner reach ...</td>\n",
" <td>No</td>\n",
" <td>2024-10-08 17:32:55</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-07/2024-10-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5281</th>\n",
" <td>2629357539419898379977886858224971150345341996...</td>\n",
" <td>36396729</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>858c4497-836e-43e8-b234-868d3d542f0d</td>\n",
" <td>0x04430ebfb7d088960233b7353cb4cefb528dc31e</td>\n",
" <td>36396742</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>pearl</td>\n",
" <td>Will the Dyson WashG1 wet floor cleaner reach ...</td>\n",
" <td>No</td>\n",
" <td>2024-10-08 07:38:25</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-07/2024-10-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5978</th>\n",
" <td>6657538643069097666675831403759282242594505545...</td>\n",
" <td>36405500</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>cb9b0663-3eea-43ec-b791-43f3d5946f91</td>\n",
" <td>0x04430ebfb7d088960233b7353cb4cefb528dc31e</td>\n",
" <td>36405513</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>pearl</td>\n",
" <td>Will Rivian produce more electric vehicles in ...</td>\n",
" <td>No</td>\n",
" <td>2024-10-08 20:10:45</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-07/2024-10-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13521</th>\n",
" <td>5425044058976052235962273954205049658875702880...</td>\n",
" <td>36400070</td>\n",
" <td>Please take over the role of a Data Scientist ...</td>\n",
" <td>prediction-request-reasoning</td>\n",
" <td>f1d2af5e-b1ab-4818-94b7-14f8d6e8c5a1</td>\n",
" <td>0x04430ebfb7d088960233b7353cb4cefb528dc31e</td>\n",
" <td>36400080</td>\n",
" <td>1</td>\n",
" <td>Response parsing error</td>\n",
" <td></td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>pearl</td>\n",
" <td>Will Rivian produce more electric vehicles in ...</td>\n",
" <td>No</td>\n",
" <td>2024-10-08 12:25:15</td>\n",
" <td>2024-10</td>\n",
" <td>2024-10-07/2024-10-13</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 23 columns</p>\n",
"</div>"
],
"text/plain": [
" request_id request_block \\\n",
"1301 6096315197620058968806130972169678143719505006... 36413260 \n",
"4446 5354600326067223816020518930816563773467758113... 36403643 \n",
"5281 2629357539419898379977886858224971150345341996... 36396729 \n",
"5978 6657538643069097666675831403759282242594505545... 36405500 \n",
"13521 5425044058976052235962273954205049658875702880... 36400070 \n",
"\n",
" prompt_request \\\n",
"1301 Please take over the role of a Data Scientist ... \n",
"4446 Please take over the role of a Data Scientist ... \n",
"5281 Please take over the role of a Data Scientist ... \n",
"5978 Please take over the role of a Data Scientist ... \n",
"13521 Please take over the role of a Data Scientist ... \n",
"\n",
" tool nonce \\\n",
"1301 prediction-request-reasoning f2016229-4284-4178-ba31-6d3d79c08db2 \n",
"4446 prediction-request-reasoning c74f8eb6-5570-4258-b86b-6e92eca1a09b \n",
"5281 prediction-request-reasoning 858c4497-836e-43e8-b234-868d3d542f0d \n",
"5978 prediction-request-reasoning cb9b0663-3eea-43ec-b791-43f3d5946f91 \n",
"13521 prediction-request-reasoning f1d2af5e-b1ab-4818-94b7-14f8d6e8c5a1 \n",
"\n",
" trader_address deliver_block error \\\n",
"1301 0x04430ebfb7d088960233b7353cb4cefb528dc31e 36413276 1 \n",
"4446 0x04430ebfb7d088960233b7353cb4cefb528dc31e 36403657 1 \n",
"5281 0x04430ebfb7d088960233b7353cb4cefb528dc31e 36396742 1 \n",
"5978 0x04430ebfb7d088960233b7353cb4cefb528dc31e 36405513 1 \n",
"13521 0x04430ebfb7d088960233b7353cb4cefb528dc31e 36400080 1 \n",
"\n",
" error_message prompt_response ... confidence info_utility \\\n",
"1301 Response parsing error ... NaN NaN \n",
"4446 Response parsing error ... NaN NaN \n",
"5281 Response parsing error ... NaN NaN \n",
"5978 Response parsing error ... NaN NaN \n",
"13521 Response parsing error ... NaN NaN \n",
"\n",
" vote win_probability market_creator \\\n",
"1301 None NaN pearl \n",
"4446 None NaN pearl \n",
"5281 None NaN pearl \n",
"5978 None NaN pearl \n",
"13521 None NaN pearl \n",
"\n",
" title currentAnswer \\\n",
"1301 Will Rivian produce more electric vehicles in ... No \n",
"4446 Will the Dyson WashG1 wet floor cleaner reach ... No \n",
"5281 Will the Dyson WashG1 wet floor cleaner reach ... No \n",
"5978 Will Rivian produce more electric vehicles in ... No \n",
"13521 Will Rivian produce more electric vehicles in ... No \n",
"\n",
" request_time request_month_year request_month_year_week \n",
"1301 2024-10-09 07:16:50 2024-10 2024-10-07/2024-10-13 \n",
"4446 2024-10-08 17:32:55 2024-10 2024-10-07/2024-10-13 \n",
"5281 2024-10-08 07:38:25 2024-10 2024-10-07/2024-10-13 \n",
"5978 2024-10-08 20:10:45 2024-10 2024-10-07/2024-10-13 \n",
"13521 2024-10-08 12:25:15 2024-10 2024-10-07/2024-10-13 \n",
"\n",
"[5 rows x 23 columns]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"target = tools_errors_pearl_reasoning_oct.loc[tools_errors_pearl_reasoning_oct[\"trader_address\"]==\"0x04430ebfb7d088960233b7353cb4cefb528dc31e\"]\n",
"target.head()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/gp/02mb1d514ng739czlxw1lhh00000gn/T/ipykernel_17275/2686300214.py:2: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" target['request_time'] = pd.to_datetime(target['request_time'])\n",
"/var/folders/gp/02mb1d514ng739czlxw1lhh00000gn/T/ipykernel_17275/2686300214.py:6: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" target['request_date'] = target['request_time'].dt.date\n"
]
}
],
"source": [
"# Step 1: Convert 'request_time' to datetime\n",
"target['request_time'] = pd.to_datetime(target['request_time'])\n",
"\n",
"# Step 2: Extract only the date\n",
"# Option 1: Using .dt.date (results in Python date objects)\n",
"target['request_date'] = target['request_time'].dt.date"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"request_date\n",
"2024-10-08 29\n",
"2024-10-09 10\n",
"Name: count, dtype: int64"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"target.request_date.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"request_id 6096315197620058968806130972169678143719505006...\n",
"request_block 36413260\n",
"prompt_request Please take over the role of a Data Scientist ...\n",
"tool prediction-request-reasoning\n",
"nonce f2016229-4284-4178-ba31-6d3d79c08db2\n",
"trader_address 0x04430ebfb7d088960233b7353cb4cefb528dc31e\n",
"deliver_block 36413276\n",
"error 1\n",
"error_message Response parsing error\n",
"prompt_response \n",
"mech_address 0x5e1d1eb61e1164d5a50b28c575da73a29595dff7\n",
"p_yes NaN\n",
"p_no NaN\n",
"confidence NaN\n",
"info_utility NaN\n",
"vote None\n",
"win_probability NaN\n",
"market_creator pearl\n",
"title Will Rivian produce more electric vehicles in ...\n",
"currentAnswer No\n",
"request_time 2024-10-09 07:16:50\n",
"request_month_year 2024-10\n",
"request_month_year_week 2024-10-07/2024-10-13\n",
"request_date 2024-10-09\n",
"Name: 1301, dtype: object"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"target.iloc[0]"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['60963151976200589688061309721696781437195050065672302545071004901874091643033',\n",
" '53546003260672238160205189308165637734677581135389860768311962356510252085357',\n",
" '26293575394198983799778868582249711503453419968199870418716975289164670157536',\n",
" '66575386430690976666758314037592822425945055456424920638493080371011311687054',\n",
" '5425044058976052235962273954205049658875702880324375176513486350978973220608',\n",
" '67706664061213144510833774262887647102859606166941783706328234599690094513710',\n",
" '98828025374278604837269142958136367369389242698175058646612841201042809221440',\n",
" '79487665733109433701267761770671777455860068843765509767086476708116395574323',\n",
" '37702190955051676132208606978682620139157915260199519916929970381323219753604',\n",
" '39569294324786741974231872134377826545140874888007473009293927983710957931560'],\n",
" dtype=object)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list_ids = target.request_id.values\n",
"list_ids[:10]"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['90593985923458899196810962386588286156538155570078296690881210441404684587554',\n",
" '68767283695784515860585993729057039088040186058017842377406754894591756511455',\n",
" '30463708402138539553111489893542873324945145496769326313504030362000739912217',\n",
" '107009206247715009517848578229257123443621203954825272856731050187387798698104',\n",
" '1791452603581598622819765450305918309250605837452864609167229991453595349104',\n",
" '83410164700209236856544326193231329461555897050465870148582616961224625051174',\n",
" '18800709011076966851620908913623693327374337392203674994417817827748941031712',\n",
" '52968186234915567486999518373725017068484409050337977059157445056559429258274',\n",
" '25079816768578500534050631284042535400266565749897206799037169746242652065181'],\n",
" dtype=object)"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list_ids[11:20]"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>request_id</th>\n",
" <th>request_date</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1301</th>\n",
" <td>6096315197620058968806130972169678143719505006...</td>\n",
" <td>2024-10-09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4446</th>\n",
" <td>5354600326067223816020518930816563773467758113...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5281</th>\n",
" <td>2629357539419898379977886858224971150345341996...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5978</th>\n",
" <td>6657538643069097666675831403759282242594505545...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13521</th>\n",
" <td>5425044058976052235962273954205049658875702880...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19109</th>\n",
" <td>6770666406121314451083377426288764710285960616...</td>\n",
" <td>2024-10-09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26394</th>\n",
" <td>9882802537427860483726914295813636736938924269...</td>\n",
" <td>2024-10-09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28451</th>\n",
" <td>7948766573310943370126776177067177745586006884...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30496</th>\n",
" <td>3770219095505167613220860697868262013915791526...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>36292</th>\n",
" <td>3956929432478674197423187213437782654514087488...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51084</th>\n",
" <td>8175211455282203482379491678632547763247823116...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>59234</th>\n",
" <td>9059398592345889919681096238658828615653815557...</td>\n",
" <td>2024-10-09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>61875</th>\n",
" <td>6876728369578451586058599372905703908804018605...</td>\n",
" <td>2024-10-09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>66420</th>\n",
" <td>3046370840213853955311148989354287332494514549...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67950</th>\n",
" <td>1070092062477150095178485782292571234436212039...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>72643</th>\n",
" <td>1791452603581598622819765450305918309250605837...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75088</th>\n",
" <td>8341016470020923685654432619323132946155589705...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>78791</th>\n",
" <td>1880070901107696685162090891362369332737433739...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>79145</th>\n",
" <td>5296818623491556748699951837372501706848440905...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>83216</th>\n",
" <td>2507981676857850053405063128404253540026656574...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>85167</th>\n",
" <td>7575008210195058310304416239166201007781878905...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>88188</th>\n",
" <td>9552646687631779229885168355150323079613443891...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>100246</th>\n",
" <td>4692241561430217878941029480346287939590785051...</td>\n",
" <td>2024-10-09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>100677</th>\n",
" <td>7206378347489269040486803921098426780132051076...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>101088</th>\n",
" <td>1092955896466926617598161352358541141356344922...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>101210</th>\n",
" <td>1527068083956919475597593744421530347315167151...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>108656</th>\n",
" <td>1324300681984336956521266305617936389896556358...</td>\n",
" <td>2024-10-09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>108846</th>\n",
" <td>8289032326759732887661005089261149134628471095...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>109312</th>\n",
" <td>5912452484774403202939990022063726888631215178...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>110341</th>\n",
" <td>6190847215316949218633078224850239375241342048...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>116511</th>\n",
" <td>1153012652040846748107002862035076676381200652...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>121108</th>\n",
" <td>1557391800733738917341431736907154545224724694...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>138827</th>\n",
" <td>2220225315128610064534249140893399020559732644...</td>\n",
" <td>2024-10-09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>146315</th>\n",
" <td>1060705375579050874189318472528055944551818109...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>149805</th>\n",
" <td>5701187523179160021887695614981479044834603062...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>151939</th>\n",
" <td>6965041493166381160828548950817860788478600202...</td>\n",
" <td>2024-10-09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>156075</th>\n",
" <td>1094553406895658377755024653190865186935248795...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>158713</th>\n",
" <td>2482181328413474980777782435770046521802662164...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>159533</th>\n",
" <td>7477199406563092998546889148948661086790369208...</td>\n",
" <td>2024-10-09</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" request_id request_date\n",
"1301 6096315197620058968806130972169678143719505006... 2024-10-09\n",
"4446 5354600326067223816020518930816563773467758113... 2024-10-08\n",
"5281 2629357539419898379977886858224971150345341996... 2024-10-08\n",
"5978 6657538643069097666675831403759282242594505545... 2024-10-08\n",
"13521 5425044058976052235962273954205049658875702880... 2024-10-08\n",
"19109 6770666406121314451083377426288764710285960616... 2024-10-09\n",
"26394 9882802537427860483726914295813636736938924269... 2024-10-09\n",
"28451 7948766573310943370126776177067177745586006884... 2024-10-08\n",
"30496 3770219095505167613220860697868262013915791526... 2024-10-08\n",
"36292 3956929432478674197423187213437782654514087488... 2024-10-08\n",
"51084 8175211455282203482379491678632547763247823116... 2024-10-08\n",
"59234 9059398592345889919681096238658828615653815557... 2024-10-09\n",
"61875 6876728369578451586058599372905703908804018605... 2024-10-09\n",
"66420 3046370840213853955311148989354287332494514549... 2024-10-08\n",
"67950 1070092062477150095178485782292571234436212039... 2024-10-08\n",
"72643 1791452603581598622819765450305918309250605837... 2024-10-08\n",
"75088 8341016470020923685654432619323132946155589705... 2024-10-08\n",
"78791 1880070901107696685162090891362369332737433739... 2024-10-08\n",
"79145 5296818623491556748699951837372501706848440905... 2024-10-08\n",
"83216 2507981676857850053405063128404253540026656574... 2024-10-08\n",
"85167 7575008210195058310304416239166201007781878905... 2024-10-08\n",
"88188 9552646687631779229885168355150323079613443891... 2024-10-08\n",
"100246 4692241561430217878941029480346287939590785051... 2024-10-09\n",
"100677 7206378347489269040486803921098426780132051076... 2024-10-08\n",
"101088 1092955896466926617598161352358541141356344922... 2024-10-08\n",
"101210 1527068083956919475597593744421530347315167151... 2024-10-08\n",
"108656 1324300681984336956521266305617936389896556358... 2024-10-09\n",
"108846 8289032326759732887661005089261149134628471095... 2024-10-08\n",
"109312 5912452484774403202939990022063726888631215178... 2024-10-08\n",
"110341 6190847215316949218633078224850239375241342048... 2024-10-08\n",
"116511 1153012652040846748107002862035076676381200652... 2024-10-08\n",
"121108 1557391800733738917341431736907154545224724694... 2024-10-08\n",
"138827 2220225315128610064534249140893399020559732644... 2024-10-09\n",
"146315 1060705375579050874189318472528055944551818109... 2024-10-08\n",
"149805 5701187523179160021887695614981479044834603062... 2024-10-08\n",
"151939 6965041493166381160828548950817860788478600202... 2024-10-09\n",
"156075 1094553406895658377755024653190865186935248795... 2024-10-08\n",
"158713 2482181328413474980777782435770046521802662164... 2024-10-08\n",
"159533 7477199406563092998546889148948661086790369208... 2024-10-09"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"target[[\"request_id\", \"request_date\"]]"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"# Step 1: Convert 'request_time' to datetime\n",
"tools['request_time'] = pd.to_datetime(tools['request_time'])\n",
"\n",
"# Step 2: Extract only the date\n",
"# Option 1: Using .dt.date (results in Python date objects)\n",
"tools['request_date'] = tools['request_time'].dt.date\n"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>request_id</th>\n",
" <th>request_date</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>6000436570989704155944120385884952057858004900...</td>\n",
" <td>2024-10-11</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>1110041886165814728304049774267297117864784041...</td>\n",
" <td>2024-10-11</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>1540850207513454596143653889780703543734000659...</td>\n",
" <td>2024-10-12</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>7893228936705618570277338740495039782889689581...</td>\n",
" <td>2024-10-10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>7526736795473306673180277838498078624434571449...</td>\n",
" <td>2024-10-08</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>162083</th>\n",
" <td>8155539169659776751020900439047793303819631815...</td>\n",
" <td>2024-10-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>162093</th>\n",
" <td>4091897651903844948533305264746058547870099773...</td>\n",
" <td>2024-10-09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>162094</th>\n",
" <td>1060448907408309804546320958065157755251608511...</td>\n",
" <td>2024-10-12</td>\n",
" </tr>\n",
" <tr>\n",
" <th>162109</th>\n",
" <td>4235777061025284573352646490318646198795416762...</td>\n",
" <td>2024-10-07</td>\n",
" </tr>\n",
" <tr>\n",
" <th>162111</th>\n",
" <td>5209142730053796928793404697801186735890129172...</td>\n",
" <td>2024-10-07</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>20516 rows × 2 columns</p>\n",
"</div>"
],
"text/plain": [
" request_id request_date\n",
"7 6000436570989704155944120385884952057858004900... 2024-10-11\n",
"11 1110041886165814728304049774267297117864784041... 2024-10-11\n",
"17 1540850207513454596143653889780703543734000659... 2024-10-12\n",
"32 7893228936705618570277338740495039782889689581... 2024-10-10\n",
"33 7526736795473306673180277838498078624434571449... 2024-10-08\n",
"... ... ...\n",
"162083 8155539169659776751020900439047793303819631815... 2024-10-13\n",
"162093 4091897651903844948533305264746058547870099773... 2024-10-09\n",
"162094 1060448907408309804546320958065157755251608511... 2024-10-12\n",
"162109 4235777061025284573352646490318646198795416762... 2024-10-07\n",
"162111 5209142730053796928793404697801186735890129172... 2024-10-07\n",
"\n",
"[20516 rows x 2 columns]"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools.loc[tools[\"request_month_year_week\"]==\"2024-10-07/2024-10-13\"][[\"request_id\", \"request_date\"]]"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"request_date\n",
"2024-10-20 4616\n",
"2024-10-18 4474\n",
"2024-10-17 4180\n",
"2024-10-19 4093\n",
"2024-09-10 4018\n",
" ... \n",
"2024-09-21 1853\n",
"2024-08-29 1700\n",
"2024-09-15 1614\n",
"2024-08-22 1421\n",
"2024-10-21 742\n",
"Name: count, Length: 61, dtype: int64"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools.request_date.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"object\n"
]
}
],
"source": [
"print(tools['request_date'].dtype)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['75267367954733066731802778384980786244345714492617935729431679575835641281777',\n",
" '84777531641003257941101275192333838936553813208125088407536800860673481676974',\n",
" '96220126533195686874770414750092684778689303224171939903636393563147529566805',\n",
" '85111692869695695070820477101480929103128037048651644814553376046710657331686',\n",
" '70955678141080262808382265854526736034962899352147754109605797381118648546015',\n",
" '89888925059941001916258915191647589006859959225855447761356001840604632558824',\n",
" '64072963113962902370586870420814897514043034924401758496712860053069476945214',\n",
" '49558713491944943262949682898061227957325052054046197143378203615269796493658',\n",
" '111138854287366484154634943297210669395092434185286519533898615765972894294967',\n",
" '63485197917885194773892649042188753341615679859375446649536109613725800096903'],\n",
" dtype=object)"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools['request_date'] = pd.to_datetime(tools['request_date'])\n",
"oct_sample = tools.loc[(tools[\"request_date\"]==\"2024-10-08\") & (tools[\"error\"]!=1)]\n",
"oct_sample.request_id.values[:10]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "hf_dashboards",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|