File size: 16,093 Bytes
e2483e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aba56f
e2483e1
 
 
2e74f75
0487dc0
16e2cb0
 
98c5ea8
16e2cb0
98c5ea8
 
58ed767
1c838e1
2cf93ef
e2483e1
 
 
 
0487dc0
9aba56f
0487dc0
e2483e1
 
 
 
99c38a1
e2483e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54916c4
e2483e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aba56f
 
16e2cb0
 
2acfed7
e2483e1
 
99c38a1
e2483e1
9aba56f
e2483e1
 
 
 
 
 
 
2acfed7
 
 
 
9aba56f
e2483e1
8ba86e5
e2483e1
 
99c38a1
d488c2b
e2483e1
0487dc0
16e2cb0
0487dc0
e2483e1
 
 
 
 
 
 
2acfed7
e2483e1
 
 
 
b4a0040
 
 
e2483e1
b4a0040
e2483e1
 
 
8ba86e5
e2483e1
 
 
 
 
b4a0040
 
 
 
e2483e1
 
 
 
 
 
 
 
 
 
 
 
 
0487dc0
e2483e1
 
 
 
 
 
 
b4a0040
 
8ba86e5
 
e2483e1
b4a0040
e2483e1
8ba86e5
e2483e1
 
 
 
 
 
b4a0040
54916c4
e2483e1
 
 
 
 
b4a0040
e2483e1
 
 
 
b4a0040
 
e2483e1
 
 
 
 
b4a0040
 
 
 
e2483e1
 
8ba86e5
e2483e1
 
 
 
42514f7
2acfed7
42514f7
 
 
 
 
 
 
 
 
 
 
54916c4
e2483e1
 
 
 
 
 
 
 
 
 
54916c4
e2483e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99c38a1
 
e2483e1
 
 
 
b4a0040
e2483e1
 
 
 
 
b4a0040
 
 
e2483e1
 
 
 
 
 
 
b4a0040
e2483e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aba56f
 
16e2cb0
 
 
9aba56f
e2483e1
 
348d031
9aba56f
0487dc0
2acfed7
 
 
e2483e1
 
 
 
2acfed7
16e2cb0
98c5ea8
 
16e2cb0
dbff7e5
58ed767
 
 
 
 
 
 
 
 
2acfed7
9aba56f
e5bed17
f69039a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5bed17
5fdfe66
47cfad7
e2483e1
 
 
 
500ea0f
 
 
348d031
8ba86e5
 
e2483e1
 
 
 
 
 
 
 
2e74f75
 
e2483e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
#   -*- coding: utf-8 -*-
#   ------------------------------------------------------------------------------
#
#     Copyright 2023 Valory AG
#
#     Licensed under the Apache License, Version 2.0 (the "License");
#     you may not use this file except in compliance with the License.
#     You may obtain a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#     Unless required by applicable law or agreed to in writing, software
#     distributed under the License is distributed on an "AS IS" BASIS,
#     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#     See the License for the specific language governing permissions and
#     limitations under the License.
#
#   ------------------------------------------------------------------------------

import time
import datetime
import pandas as pd
from typing import Any
from enum import Enum
from tqdm import tqdm
import numpy as np
import os
from web3_utils import query_conditional_tokens_gc_subgraph
from get_mech_info import (
    DATETIME_60_DAYS_AGO,
    update_fpmmTrades_parquet,
    update_tools_parquet,
    update_all_trades_parquet,
)
from utils import wei_to_unit, convert_hex_to_int, JSON_DATA_DIR, DATA_DIR, TMP_DIR
from staking import label_trades_by_staking

DUST_THRESHOLD = 10000000000000
INVALID_ANSWER = -1
DEFAULT_FROM_DATE = "1970-01-01T00:00:00"
DEFAULT_TO_DATE = "2038-01-19T03:14:07"

DEFAULT_60_DAYS_AGO_TIMESTAMP = (DATETIME_60_DAYS_AGO).timestamp()

WXDAI_CONTRACT_ADDRESS = "0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d"
DEFAULT_MECH_FEE = 0.01
DUST_THRESHOLD = 10000000000000


class MarketState(Enum):
    """Market state"""

    OPEN = 1
    PENDING = 2
    FINALIZING = 3
    ARBITRATING = 4
    CLOSED = 5

    def __str__(self) -> str:
        """Prints the market status."""
        return self.name.capitalize()


class MarketAttribute(Enum):
    """Attribute"""

    NUM_TRADES = "Num_trades"
    WINNER_TRADES = "Winner_trades"
    NUM_REDEEMED = "Num_redeemed"
    INVESTMENT = "Investment"
    FEES = "Fees"
    MECH_CALLS = "Mech_calls"
    MECH_FEES = "Mech_fees"
    EARNINGS = "Earnings"
    NET_EARNINGS = "Net_earnings"
    REDEMPTIONS = "Redemptions"
    ROI = "ROI"

    def __str__(self) -> str:
        """Prints the attribute."""
        return self.value

    def __repr__(self) -> str:
        """Prints the attribute representation."""
        return self.name

    @staticmethod
    def argparse(s: str) -> "MarketAttribute":
        """Performs string conversion to MarketAttribute."""
        try:
            return MarketAttribute[s.upper()]
        except KeyError as e:
            raise ValueError(f"Invalid MarketAttribute: {s}") from e


ALL_TRADES_STATS_DF_COLS = [
    "trader_address",
    "market_creator",
    "trade_id",
    "creation_timestamp",
    "title",
    "market_status",
    "collateral_amount",
    "outcome_index",
    "trade_fee_amount",
    "outcomes_tokens_traded",
    "current_answer",
    "is_invalid",
    "winning_trade",
    "earnings",
    "redeemed",
    "redeemed_amount",
    "num_mech_calls",
    "mech_fee_amount",
    "net_earnings",
    "roi",
]

SUMMARY_STATS_DF_COLS = [
    "trader_address",
    "num_trades",
    "num_winning_trades",
    "num_redeemed",
    "total_investment",
    "total_trade_fees",
    "num_mech_calls",
    "total_mech_fees",
    "total_earnings",
    "total_redeemed_amount",
    "total_net_earnings",
    "total_net_earnings_wo_mech_fees",
    "total_roi",
    "total_roi_wo_mech_fees",
    "mean_mech_calls_per_trade",
    "mean_mech_fee_amount_per_trade",
]


def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:
    """Returns whether the user has redeemed the position."""
    user_positions = user_json["data"]["user"]["userPositions"]
    condition_id = fpmmTrade["fpmm.condition.id"]
    for position in user_positions:
        position_condition_ids = position["position"]["conditionIds"]
        balance = int(position["balance"])

        if condition_id in position_condition_ids:
            if balance == 0:
                return True
            # return early
            return False
    return False


def prepare_profitalibity_data(
    rpc: str,
    tools_filename: str,
    trades_filename: str,
) -> pd.DataFrame:
    """Prepare data for profitalibity analysis."""

    # Check if tools.parquet is in the same directory
    try:
        tools = pd.read_parquet(DATA_DIR / tools_filename)

        # make sure creator_address is in the columns
        assert "trader_address" in tools.columns, "trader_address column not found"

        # lowercase and strip creator_address
        tools["trader_address"] = tools["trader_address"].str.lower().str.strip()

        tools.drop_duplicates(
            subset=["request_id", "request_block"], keep="last", inplace=True
        )
        tools.to_parquet(DATA_DIR / tools_filename)
        print(f"{tools_filename} loaded")
    except FileNotFoundError:
        print("tools.parquet not found. Please run tools.py first.")
        return

    # Check if fpmmTrades.parquet is in the same directory
    print("Reading the trades file")
    try:
        fpmmTrades = pd.read_parquet(DATA_DIR / trades_filename)
    except FileNotFoundError:
        print(f"Error reading {trades_filename} file .")

    # make sure trader_address is in the columns
    assert "trader_address" in fpmmTrades.columns, "trader_address column not found"

    # lowercase and strip creator_address
    fpmmTrades["trader_address"] = fpmmTrades["trader_address"].str.lower().str.strip()

    return fpmmTrades


def determine_market_status(trade, current_answer):
    """Determine the market status of a trade."""
    if (current_answer is np.nan or current_answer is None) and time.time() >= int(
        trade["fpmm.openingTimestamp"]
    ):
        return MarketState.PENDING
    elif current_answer is np.nan or current_answer is None:
        return MarketState.OPEN
    elif trade["fpmm.isPendingArbitration"]:
        return MarketState.ARBITRATING
    elif time.time() < int(trade["fpmm.answerFinalizedTimestamp"]):
        return MarketState.FINALIZING
    return MarketState.CLOSED


def analyse_trader(
    trader_address: str,
    fpmmTrades: pd.DataFrame,
    tools: pd.DataFrame,
    daily_info: bool = False,
) -> pd.DataFrame:
    """Analyse a trader's trades"""
    # Filter trades and tools for the given trader
    trades = fpmmTrades[fpmmTrades["trader_address"] == trader_address]
    tools_usage = tools[tools["trader_address"] == trader_address]

    # Prepare the DataFrame
    trades_df = pd.DataFrame(columns=ALL_TRADES_STATS_DF_COLS)
    if trades.empty:
        return trades_df

    # Fetch user's conditional tokens gc graph
    try:
        user_json = query_conditional_tokens_gc_subgraph(trader_address)
    except Exception as e:
        print(f"Error fetching user data: {e}")
        return trades_df

    # Iterate over the trades
    for i, trade in tqdm(trades.iterrows(), total=len(trades), desc="Analysing trades"):
        try:
            market_answer = trade["fpmm.currentAnswer"]
            if not daily_info and not market_answer:
                print(f"Skipping trade {i} because currentAnswer is NaN")
                continue
            # Parsing and computing shared values

            creation_timestamp_utc = datetime.datetime.fromtimestamp(
                int(trade["creationTimestamp"]), tz=datetime.timezone.utc
            )
            collateral_amount = wei_to_unit(float(trade["collateralAmount"]))
            fee_amount = wei_to_unit(float(trade["feeAmount"]))
            outcome_tokens_traded = wei_to_unit(float(trade["outcomeTokensTraded"]))
            earnings, winner_trade = (0, False)
            redemption = _is_redeemed(user_json, trade)
            current_answer = market_answer if market_answer else None
            market_creator = trade["market_creator"]

            # Determine market status
            market_status = determine_market_status(trade, current_answer)

            # Skip non-closed markets
            if not daily_info and market_status != MarketState.CLOSED:
                print(
                    f"Skipping trade {i} because market is not closed. Market Status: {market_status}"
                )
                continue
            if current_answer is not None:
                current_answer = convert_hex_to_int(current_answer)

            # Compute invalidity
            is_invalid = current_answer == INVALID_ANSWER

            # Compute earnings and winner trade status
            if current_answer is None:
                earnings = 0.0
                winner_trade = None
            elif is_invalid:
                earnings = collateral_amount
                winner_trade = False
            elif int(trade["outcomeIndex"]) == current_answer:
                earnings = outcome_tokens_traded
                winner_trade = True

            # Compute mech calls
            if len(tools_usage) == 0:
                print("No tools usage information")
                num_mech_calls = 0
            else:
                try:
                    num_mech_calls = (
                        tools_usage["prompt_request"]
                        .apply(lambda x: trade["title"] in x)
                        .sum()
                    )
                except Exception:
                    print(f"Error while getting the number of mech calls")
                    num_mech_calls = 2  # Average value

            net_earnings = (
                earnings
                - fee_amount
                - (num_mech_calls * DEFAULT_MECH_FEE)
                - collateral_amount
            )

            # Assign values to DataFrame
            trades_df.loc[i] = {
                "trader_address": trader_address,
                "market_creator": market_creator,
                "trade_id": trade["id"],
                "market_status": market_status.name,
                "creation_timestamp": creation_timestamp_utc,
                "title": trade["title"],
                "collateral_amount": collateral_amount,
                "outcome_index": trade["outcomeIndex"],
                "trade_fee_amount": fee_amount,
                "outcomes_tokens_traded": outcome_tokens_traded,
                "current_answer": current_answer,
                "is_invalid": is_invalid,
                "winning_trade": winner_trade,
                "earnings": earnings,
                "redeemed": redemption,
                "redeemed_amount": earnings if redemption else 0,
                "num_mech_calls": num_mech_calls,
                "mech_fee_amount": num_mech_calls * DEFAULT_MECH_FEE,
                "net_earnings": net_earnings,
                "roi": net_earnings
                / (collateral_amount + fee_amount + num_mech_calls * DEFAULT_MECH_FEE),
            }

        except Exception as e:
            print(f"Error processing trade {i}: {e}")
            print(trade)
            continue

    return trades_df


def analyse_all_traders(
    trades: pd.DataFrame, tools: pd.DataFrame, daily_info: bool = False
) -> pd.DataFrame:
    """Analyse all creators."""
    all_traders = []
    for trader in tqdm(
        trades["trader_address"].unique(),
        total=len(trades["trader_address"].unique()),
        desc="Analysing creators",
    ):
        all_traders.append(analyse_trader(trader, trades, tools, daily_info))

    # concat all creators
    all_creators_df = pd.concat(all_traders)

    return all_creators_df


def summary_analyse(df):
    """Summarise profitability analysis."""
    # Ensure DataFrame is not empty
    if df.empty:
        return pd.DataFrame(columns=SUMMARY_STATS_DF_COLS)

    # Group by trader_address
    grouped = df.groupby("trader_address")

    # Create summary DataFrame
    summary_df = grouped.agg(
        num_trades=("trader_address", "size"),
        num_winning_trades=("winning_trade", lambda x: float((x).sum())),
        num_redeemed=("redeemed", lambda x: float(x.sum())),
        total_investment=("collateral_amount", "sum"),
        total_trade_fees=("trade_fee_amount", "sum"),
        num_mech_calls=("num_mech_calls", "sum"),
        total_mech_fees=("mech_fee_amount", "sum"),
        total_earnings=("earnings", "sum"),
        total_redeemed_amount=("redeemed_amount", "sum"),
        total_net_earnings=("net_earnings", "sum"),
    )

    # Calculating additional columns
    summary_df["total_roi"] = (
        summary_df["total_net_earnings"] / summary_df["total_investment"]
    )
    summary_df["mean_mech_calls_per_trade"] = (
        summary_df["num_mech_calls"] / summary_df["num_trades"]
    )
    summary_df["mean_mech_fee_amount_per_trade"] = (
        summary_df["total_mech_fees"] / summary_df["num_trades"]
    )
    summary_df["total_net_earnings_wo_mech_fees"] = (
        summary_df["total_net_earnings"] + summary_df["total_mech_fees"]
    )
    summary_df["total_roi_wo_mech_fees"] = (
        summary_df["total_net_earnings_wo_mech_fees"] / summary_df["total_investment"]
    )

    # Resetting index to include trader_address
    summary_df.reset_index(inplace=True)

    return summary_df


def run_profitability_analysis(
    rpc: str,
    tools_filename: str,
    trades_filename: str,
    merge: bool = False,
):
    """Create all trades analysis."""

    # load dfs from data folder for analysis
    print(f"Preparing data with {tools_filename} and {trades_filename}")
    fpmmTrades = prepare_profitalibity_data(rpc, tools_filename, trades_filename)
    if merge:
        update_tools_parquet(rpc, tools_filename)
    tools = pd.read_parquet(DATA_DIR / "tools.parquet")

    print("Analysing trades...")
    all_trades_df = analyse_all_traders(fpmmTrades, tools)

    # # merge previous files if requested
    if merge:
        update_fpmmTrades_parquet(trades_filename)
        all_trades_df = update_all_trades_parquet(all_trades_df)

    # debugging purposes
    all_trades_df.to_parquet(JSON_DATA_DIR / "all_trades_df.parquet", index=False)

    # filter trades coming from non-Olas traders that are placing no mech calls
    no_mech_calls_mask = (all_trades_df["staking"] == "non_Olas") & (
        all_trades_df.loc["num_mech_calls"] == 0
    )
    no_mech_calls_df = all_trades_df.loc[no_mech_calls_mask]
    no_mech_calls_df.to_parquet(TMP_DIR / "no_mech_calls_trades.parquet", index=False)
    all_trades_df = all_trades_df.loc[~no_mech_calls_mask]

    # filter invalid markets. Condition: "is_invalid" is True
    invalid_trades = all_trades_df.loc[all_trades_df["is_invalid"] == True]
    if len(invalid_trades) == 0:
        print("No new invalid trades")
    else:
        if merge:
            try:
                print("Merging invalid trades parquet file")
                old_invalid_trades = pd.read_parquet(
                    DATA_DIR / "invalid_trades.parquet"
                )
                merge_df = pd.concat(
                    [old_invalid_trades, invalid_trades], ignore_index=True
                )
                invalid_trades = merge_df.drop_duplicates()
            except Exception as e:
                print(f"Error updating the invalid trades parquet {e}")
        invalid_trades.to_parquet(DATA_DIR / "invalid_trades.parquet", index=False)

    all_trades_df = all_trades_df.loc[all_trades_df["is_invalid"] == False]

    # summarize profitability df
    print("Summarising trades...")
    summary_df = summary_analyse(all_trades_df)

    # add staking labels
    label_trades_by_staking(trades_df=all_trades_df)

    # save to parquet
    all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
    summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)

    print("Done!")

    return all_trades_df, summary_df


if __name__ == "__main__":
    rpc = "https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a"
    if os.path.exists(DATA_DIR / "fpmmTrades.parquet"):
        os.remove(DATA_DIR / "fpmmTrades.parquet")
    run_profitability_analysis(rpc)