File size: 6,853 Bytes
e2483e1 e3d589e 35f470e e2483e1 9679b78 e3d589e e2483e1 35f470e e3d589e 35f470e c7370ec 35f470e 6db6faf 35f470e f7ad8ae 35f470e f7ad8ae 35f470e 6db6faf 35f470e 6db6faf 35f470e 6db6faf 35f470e 6db6faf 35f470e 6db6faf 35f470e 6db6faf 35f470e 6db6faf 35f470e 6db6faf 35f470e e3d589e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import pandas as pd
import gradio as gr
import numpy as np
from tabs.metrics import tool_metric_choices
import plotly.express as px
HEIGHT = 600
WIDTH = 1000
tools_palette = {
"prediction-request-reasoning": "darkorchid",
"claude-prediction-offline": "rebeccapurple",
"prediction-request-reasoning-claude": "slateblue",
"prediction-request-rag-claude": "steelblue",
"prediction-online": "darkcyan",
"prediction-offline": "mediumaquamarine",
"claude-prediction-online": "mediumseagreen",
"prediction-online-sme": "yellowgreen",
"prediction-url-cot-claude": "gold",
"prediction-offline-sme": "orange",
"prediction-request-rag": "chocolate",
}
def prepare_tools(tools: pd.DataFrame) -> pd.DataFrame:
tools["request_time"] = pd.to_datetime(tools["request_time"], utc=True)
tools["request_date"] = tools["request_time"].dt.date
tools = tools.sort_values(by="request_time", ascending=True)
tools["request_month_year_week"] = (
pd.to_datetime(tools["request_time"])
.dt.to_period("W")
.dt.start_time.dt.strftime("%b-%d-%Y")
)
# preparing the tools graph
# adding the total
tools_all = tools.copy(deep=True)
tools_all["market_creator"] = "all"
# merging both dataframes
tools = pd.concat([tools, tools_all], ignore_index=True)
tools = tools.sort_values(by="request_time", ascending=True)
return tools
def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the overall winning rate data for the given tools and calculates the winning percentage."""
overall_wins = (
wins_df.groupby(["request_month_year_week", "market_creator"], sort=False)
.agg({"0": "sum", "1": "sum", "win_perc": "mean", "total_request": "sum"})
.rename(columns={"0": "losses", "1": "wins"})
.reset_index()
)
return overall_wins
def sort_key(date_str):
month, day, year = date_str.split("-")
month_order = [
"Jan",
"Feb",
"Mar",
"Apr",
"May",
"Jun",
"Jul",
"Aug",
"Sep",
"Oct",
"Nov",
"Dec",
]
month_num = month_order.index(month) + 1
day = int(day)
year = int(year)
return (year, month_num, day) # year, month, day
def integrated_plot_tool_winnings_overall_per_market_by_week(
winning_df: pd.DataFrame,
winning_selector: str = "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %",
) -> gr.Plot:
# get the column name from the metric name
column_name = tool_metric_choices.get(winning_selector)
wins_df = get_overall_winning_rate_by_market(winning_df)
# Sort the unique values of request_month_year_week
sorted_categories = sorted(
wins_df["request_month_year_week"].unique(), key=sort_key
)
# Create a categorical type with a specific order
wins_df["request_month_year_week"] = pd.Categorical(
wins_df["request_month_year_week"], categories=sorted_categories, ordered=True
)
# Sort the DataFrame based on the new categorical column
wins_df = wins_df.sort_values("request_month_year_week")
fig = px.bar(
wins_df,
x="request_month_year_week",
y=column_name,
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
"request_month_year_week": sorted_categories,
},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title=winning_selector,
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
def integrated_tool_winnings_by_tool_per_market(
wins_df: pd.DataFrame, tool: str
) -> gr.Plot:
tool_wins_df = wins_df[wins_df["tool"] == tool]
# Sort the unique values of request_month_year_week
sorted_categories = sorted(
tool_wins_df["request_month_year_week"].unique(), key=sort_key
)
# Create a categorical type with a specific order
tool_wins_df["request_month_year_week"] = pd.Categorical(
tool_wins_df["request_month_year_week"],
categories=sorted_categories,
ordered=True,
)
# Sort the DataFrame based on the new categorical column
wins_df = wins_df.sort_values("request_month_year_week")
fig = px.bar(
tool_wins_df,
x="request_month_year_week",
y="win_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
"request_month_year_week": sorted_categories,
},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
def get_daily_mech_requests(
daily_mech_req_df: pd.DataFrame, market_creator: str
) -> gr.Plot:
if market_creator == "pearl":
daily_mech_req_per_tool = daily_mech_req_df.loc[
daily_mech_req_df["market_creator"] == "pearl"
]
else: # quickstart
daily_mech_req_per_tool = daily_mech_req_df.loc[
daily_mech_req_df["market_creator"] == "quickstart"
]
daily_mech_req_per_tool = daily_mech_req_per_tool[
["request_date", "tool", "total_mech_requests"]
]
pivoted = daily_mech_req_per_tool.pivot(
index="request_date", columns="tool", values="total_mech_requests"
)
# Sort the columns for each row independently
sorted_values = np.sort(pivoted.values, axis=1)[
:, ::-1
] # sort and reverse (descending)
sorted_columns = np.argsort(pivoted.values, axis=1)[:, ::-1] # get sorting indices
sorted_df = pd.DataFrame(
sorted_values,
index=pivoted.index,
columns=[
pivoted.columns[i] for i in sorted_columns[0]
], # use first row's order
)
sorted_long = sorted_df.reset_index().melt(
id_vars=["request_date"], var_name="tool", value_name="total_mech_requests"
)
fig = px.bar(
sorted_long,
x="request_date",
y="total_mech_requests",
color="tool",
color_discrete_map=tools_palette,
)
fig.update_layout(
xaxis_title="Day of the request",
yaxis_title="Total daily mech requests",
# legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
return gr.Plot(value=fig)
|