File size: 6,853 Bytes
e2483e1
 
e3d589e
35f470e
 
e2483e1
 
9679b78
 
e3d589e
 
 
 
 
 
 
 
 
 
 
 
 
e2483e1
 
35f470e
e3d589e
 
35f470e
 
 
c7370ec
 
 
35f470e
 
 
 
 
 
 
 
 
 
 
6db6faf
 
 
 
 
 
 
 
 
 
 
35f470e
f7ad8ae
35f470e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ad8ae
 
 
35f470e
 
 
 
 
6db6faf
 
35f470e
 
 
 
 
 
 
6db6faf
35f470e
 
 
 
 
 
 
 
6db6faf
35f470e
6db6faf
35f470e
6db6faf
 
35f470e
 
 
 
 
6db6faf
 
 
35f470e
6db6faf
 
 
 
35f470e
6db6faf
 
35f470e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3d589e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import pandas as pd
import gradio as gr
import numpy as np
from tabs.metrics import tool_metric_choices
import plotly.express as px


HEIGHT = 600
WIDTH = 1000
tools_palette = {
    "prediction-request-reasoning": "darkorchid",
    "claude-prediction-offline": "rebeccapurple",
    "prediction-request-reasoning-claude": "slateblue",
    "prediction-request-rag-claude": "steelblue",
    "prediction-online": "darkcyan",
    "prediction-offline": "mediumaquamarine",
    "claude-prediction-online": "mediumseagreen",
    "prediction-online-sme": "yellowgreen",
    "prediction-url-cot-claude": "gold",
    "prediction-offline-sme": "orange",
    "prediction-request-rag": "chocolate",
}


def prepare_tools(tools: pd.DataFrame) -> pd.DataFrame:
    tools["request_time"] = pd.to_datetime(tools["request_time"], utc=True)
    tools["request_date"] = tools["request_time"].dt.date
    tools = tools.sort_values(by="request_time", ascending=True)

    tools["request_month_year_week"] = (
        pd.to_datetime(tools["request_time"])
        .dt.to_period("W")
        .dt.start_time.dt.strftime("%b-%d-%Y")
    )
    # preparing the tools graph
    # adding the total
    tools_all = tools.copy(deep=True)
    tools_all["market_creator"] = "all"
    # merging both dataframes
    tools = pd.concat([tools, tools_all], ignore_index=True)
    tools = tools.sort_values(by="request_time", ascending=True)
    return tools


def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning rate data for the given tools and calculates the winning percentage."""
    overall_wins = (
        wins_df.groupby(["request_month_year_week", "market_creator"], sort=False)
        .agg({"0": "sum", "1": "sum", "win_perc": "mean", "total_request": "sum"})
        .rename(columns={"0": "losses", "1": "wins"})
        .reset_index()
    )
    return overall_wins


def sort_key(date_str):
    month, day, year = date_str.split("-")
    month_order = [
        "Jan",
        "Feb",
        "Mar",
        "Apr",
        "May",
        "Jun",
        "Jul",
        "Aug",
        "Sep",
        "Oct",
        "Nov",
        "Dec",
    ]
    month_num = month_order.index(month) + 1
    day = int(day)
    year = int(year)
    return (year, month_num, day)  # year, month, day


def integrated_plot_tool_winnings_overall_per_market_by_week(
    winning_df: pd.DataFrame,
    winning_selector: str = "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %",
) -> gr.Plot:

    # get the column name from the metric name
    column_name = tool_metric_choices.get(winning_selector)

    wins_df = get_overall_winning_rate_by_market(winning_df)
    # Sort the unique values of request_month_year_week
    sorted_categories = sorted(
        wins_df["request_month_year_week"].unique(), key=sort_key
    )
    # Create a categorical type with a specific order
    wins_df["request_month_year_week"] = pd.Categorical(
        wins_df["request_month_year_week"], categories=sorted_categories, ordered=True
    )

    # Sort the DataFrame based on the new categorical column
    wins_df = wins_df.sort_values("request_month_year_week")

    fig = px.bar(
        wins_df,
        x="request_month_year_week",
        y=column_name,
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={
            "market_creator": ["pearl", "quickstart", "all"],
            "request_month_year_week": sorted_categories,
        },
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title=winning_selector,
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(value=fig)


def integrated_tool_winnings_by_tool_per_market(
    wins_df: pd.DataFrame, tool: str
) -> gr.Plot:

    tool_wins_df = wins_df[wins_df["tool"] == tool]
    # Sort the unique values of request_month_year_week
    sorted_categories = sorted(
        tool_wins_df["request_month_year_week"].unique(), key=sort_key
    )
    # Create a categorical type with a specific order
    tool_wins_df["request_month_year_week"] = pd.Categorical(
        tool_wins_df["request_month_year_week"],
        categories=sorted_categories,
        ordered=True,
    )

    # Sort the DataFrame based on the new categorical column
    wins_df = wins_df.sort_values("request_month_year_week")
    fig = px.bar(
        tool_wins_df,
        x="request_month_year_week",
        y="win_perc",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={
            "market_creator": ["pearl", "quickstart", "all"],
            "request_month_year_week": sorted_categories,
        },
    )

    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(value=fig)


def get_daily_mech_requests(
    daily_mech_req_df: pd.DataFrame, market_creator: str
) -> gr.Plot:

    if market_creator == "pearl":
        daily_mech_req_per_tool = daily_mech_req_df.loc[
            daily_mech_req_df["market_creator"] == "pearl"
        ]
    else:  # quickstart
        daily_mech_req_per_tool = daily_mech_req_df.loc[
            daily_mech_req_df["market_creator"] == "quickstart"
        ]

    daily_mech_req_per_tool = daily_mech_req_per_tool[
        ["request_date", "tool", "total_mech_requests"]
    ]
    pivoted = daily_mech_req_per_tool.pivot(
        index="request_date", columns="tool", values="total_mech_requests"
    )

    # Sort the columns for each row independently
    sorted_values = np.sort(pivoted.values, axis=1)[
        :, ::-1
    ]  # sort and reverse (descending)
    sorted_columns = np.argsort(pivoted.values, axis=1)[:, ::-1]  # get sorting indices

    sorted_df = pd.DataFrame(
        sorted_values,
        index=pivoted.index,
        columns=[
            pivoted.columns[i] for i in sorted_columns[0]
        ],  # use first row's order
    )

    sorted_long = sorted_df.reset_index().melt(
        id_vars=["request_date"], var_name="tool", value_name="total_mech_requests"
    )

    fig = px.bar(
        sorted_long,
        x="request_date",
        y="total_mech_requests",
        color="tool",
        color_discrete_map=tools_palette,
    )
    fig.update_layout(
        xaxis_title="Day of the request",
        yaxis_title="Total daily mech requests",
        # legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    return gr.Plot(value=fig)