File size: 12,186 Bytes
e2483e1
 
2273640
f31132a
42514f7
d637ff8
e2483e1
6d293e0
7d215da
7a45667
e2483e1
 
 
7a45667
b4a0040
7a45667
 
 
929ee61
7a45667
 
 
 
c7370ec
 
 
7a45667
 
e2483e1
 
 
 
472bae0
7a45667
 
 
 
 
 
 
472bae0
7a45667
929ee61
 
 
7a45667
e2483e1
7a45667
e2483e1
 
7a45667
e2483e1
 
7a45667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929ee61
 
 
 
7a45667
 
 
 
42514f7
e2483e1
 
929ee61
e2483e1
 
7a45667
42514f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2483e1
7208a5f
e2483e1
 
 
 
 
 
 
 
 
7a45667
 
 
 
6d293e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3fadc8
 
6d293e0
a3fadc8
6d293e0
 
 
 
 
 
 
 
 
 
f31132a
 
 
 
 
 
 
 
 
 
 
 
58ed767
f31132a
 
 
 
 
 
 
 
 
 
d637ff8
 
 
f7ad8ae
d637ff8
 
 
 
f7ad8ae
f31132a
 
42514f7
10ddf0c
 
 
 
 
 
58ed767
f31132a
 
1bda8f5
 
 
 
 
 
 
58ed767
 
 
 
 
 
f31132a
10ddf0c
f31132a
 
 
58ed767
 
 
 
 
 
42514f7
10ddf0c
1bda8f5
f31132a
 
10ddf0c
58ed767
f31132a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d637ff8
 
f31132a
 
 
 
6d293e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3fadc8
 
6d293e0
 
 
 
 
 
 
 
 
 
 
 
 
42514f7
d637ff8
42514f7
 
 
 
 
 
 
 
 
 
 
 
58ed767
42514f7
d637ff8
42514f7
 
 
 
d637ff8
 
 
f7ad8ae
d637ff8
 
 
 
f7ad8ae
42514f7
58ed767
 
 
 
42514f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ed767
42514f7
d637ff8
 
42514f7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from datetime import datetime

HEIGHT = 400
WIDTH = 1100


def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Prepares the trades data for analysis."""
    trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])
    trades_df["creation_date"] = trades_df["creation_timestamp"].dt.date
    trades_df["creation_timestamp"] = trades_df["creation_timestamp"].dt.tz_convert(
        "UTC"
    )
    trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
    trades_df["month_year"] = (
        trades_df["creation_timestamp"].dt.to_period("M").astype(str)
    )
    trades_df["month_year_week"] = (
        trades_df["creation_timestamp"]
        .dt.to_period("W")
        .dt.start_time.dt.strftime("%b-%d-%Y")
    )
    trades_df["winning_trade"] = trades_df["winning_trade"].astype(int)
    return trades_df


def get_overall_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall trades data"""
    trades_count = trades_df.groupby("month_year_week").size().reset_index()
    trades_count.columns = trades_count.columns.astype(str)
    trades_count.rename(columns={"0": "trades"}, inplace=True)
    return trades_count


def get_overall_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall trades data"""
    trades_count = (
        trades_df.groupby(["month_year_week", "market_creator"], sort=False)
        .size()
        .reset_index()
    )
    trades_count.columns = trades_count.columns.astype(str)
    trades_count.rename(columns={"0": "trades"}, inplace=True)
    return trades_count


def get_overall_winning_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning trades data for the given tools and calculates the winning percentage."""
    winning_trades = (
        trades_df.groupby(["month_year_week"])["winning_trade"].sum()
        / trades_df.groupby(["month_year_week"])["winning_trade"].count()
        * 100
    )
    # winning_trades is a series, give it a dataframe
    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.columns = ["month_year_week", "winning_trade"]
    return winning_trades


def get_overall_winning_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning trades data for the given tools and calculates the winning percentage."""
    winning_trades = (
        trades_df.groupby(["month_year_week", "market_creator"], sort=False)[
            "winning_trade"
        ].sum()
        / trades_df.groupby(["month_year_week", "market_creator"], sort=False)[
            "winning_trade"
        ].count()
        * 100
    )

    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.columns = ["month_year_week", "market_creator", "winning_trade"]
    return winning_trades


def get_overall_winning_by_market_and_trader_type(
    trades_df: pd.DataFrame,
) -> pd.DataFrame:
    """Gets the overall winning trades data for the given tools and calculates the winning percentage."""
    # Group by week, market_creator and staking_type
    winning_trades = (
        trades_df.groupby(
            ["month_year_week", "market_creator", "staking_type"], sort=False
        )["winning_trade"].sum()
        / trades_df.groupby(
            ["month_year_week", "market_creator", "staking_type"], sort=False
        )["winning_trade"].count()
        * 100
    )

    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.columns = [
        "month_year_week",
        "market_creator",
        "staking_type",
        "winning_trade",
    ]
    return winning_trades


def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
    """Plots the weekly trades data ."""
    return gr.BarPlot(
        value=trades_df,
        x="month_year_week",
        y="trades",
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["month_year_week", "trades"],
        height=HEIGHT,
        width=WIDTH,
    )


def integrated_plot_trades_per_market_by_week(trades_df: pd.DataFrame) -> gr.Plot:

    # adding the total
    trades_all = trades_df.copy(deep=True)
    trades_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )

    trades = get_overall_by_market_trades(all_filtered_trades)
    fig = px.bar(
        trades,
        x="month_year_week",
        y="trades",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )

    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly nr of trades",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(value=fig)


def integrated_plot_trades_per_market_by_week_v2(trades_df: pd.DataFrame) -> gr.Plot:
    # adding the total
    trades_all = trades_df.copy(deep=True)
    trades_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )
    # Create binary staking category
    all_filtered_trades["staking_type"] = all_filtered_trades["staking"].apply(
        lambda x: "non_Olas" if x == "non_Olas" else "Olas"
    )

    # Group by week, market_creator and staking_type
    trades = (
        all_filtered_trades.groupby(
            ["month_year_week", "market_creator", "staking_type"], sort=False
        )
        .size()
        .reset_index(name="trades")
    )
    # Convert string dates to datetime and sort them
    all_dates_dt = sorted(
        [
            datetime.strptime(date, "%b-%d-%Y")
            for date in trades["month_year_week"].unique()
        ]
    )
    # Convert back to string format
    all_dates = [date.strftime("%b-%d-%Y") for date in all_dates_dt]
    # Combine the traces
    final_traces = []
    market_colors = {"pearl": "darkviolet", "quickstart": "goldenrod", "all": "green"}
    market_darker_colors = {
        "pearl": "purple",
        "quickstart": "darkgoldenrod",
        "all": "darkgreen",
    }

    # Process both Olas and non-Olas traces for each market together
    for market in ["pearl", "quickstart", "all"]:
        market_data = trades[trades["market_creator"] == market]
        # Create a dictionary to store the Olas values for each week
        olas_values = dict(
            zip(
                market_data[market_data["staking_type"] == "Olas"]["month_year_week"],
                market_data[market_data["staking_type"] == "Olas"]["trades"],
            )
        )
        # First add 'Olas' trace
        olas_data = market_data[market_data["staking_type"] == "Olas"]
        olas_trace = go.Bar(
            x=olas_data["month_year_week"],
            y=olas_data["trades"],
            name=f"{market}-Olas",
            marker_color=market_colors[market],
            offsetgroup=market,  # Keep the market grouping
            showlegend=True,
        )

        # Then add 'non_Olas' trace with base set to olas values
        non_Olas_data = market_data[market_data["staking_type"] == "non_Olas"]
        non_Olas_trace = go.Bar(
            x=non_Olas_data["month_year_week"],
            y=non_Olas_data["trades"],
            name=f"{market}-non_Olas",
            marker_color=market_darker_colors[market],
            offsetgroup=market,  # Keep the market grouping
            base=[olas_values.get(x, 0) for x in non_Olas_data["month_year_week"]],
            showlegend=True,
        )

        final_traces.extend([olas_trace, non_Olas_trace])

    # Create new figure with the combined traces
    fig = go.Figure(data=final_traces)

    # Update layout
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly nr of trades",
        legend=dict(yanchor="top", y=0.5),
        width=WIDTH,
        height=HEIGHT,
        barmode="group",
    )

    # Update x-axis format
    fig.update_xaxes(tickformat="%b %d\n%Y")
    # Update layout to force x-axis category order (hotfix for a sorting issue)
    fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates})

    return gr.Plot(value=fig)


def integrated_plot_winning_trades_per_market_by_week(
    trades_df: pd.DataFrame,
) -> gr.Plot:
    # adding the total
    trades_all = trades_df.copy(deep=True)
    trades_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )
    final_df = get_overall_winning_by_market_trades(all_filtered_trades)
    fig = px.bar(
        final_df,
        x="month_year_week",
        y="winning_trade",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly % of winning trades",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(
        value=fig,
    )


def integrated_plot_winning_trades_per_market_by_week_v2(
    trades_df: pd.DataFrame, trader_filter: str = "all"
) -> gr.Plot:
    # adding the total
    trades_all = trades_df.copy(deep=True)
    trades_all["market_creator"] = "all"

    # merging both dataframes
    all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
    all_filtered_trades = all_filtered_trades.sort_values(
        by="creation_timestamp", ascending=True
    )
    # Create binary staking category
    all_filtered_trades["staking_type"] = all_filtered_trades["staking"].apply(
        lambda x: "non_Olas" if x == "non_Olas" else "Olas"
    )
    if trader_filter == "all":
        final_df = get_overall_winning_by_market_trades(all_filtered_trades)
    else:
        final_df = get_overall_winning_by_market_and_trader_type(all_filtered_trades)

    # Convert string dates to datetime and sort them
    all_dates_dt = sorted(
        [
            datetime.strptime(date, "%b-%d-%Y")
            for date in final_df["month_year_week"].unique()
        ]
    )
    # Convert back to string format
    all_dates = [date.strftime("%b-%d-%Y") for date in all_dates_dt]
    color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
    if trader_filter == "Olas":
        final_df = final_df[final_df["staking_type"] == "Olas"]
    elif trader_filter == "non_Olas":
        final_df = final_df[final_df["staking_type"] == "non_Olas"]
        color_discrete_sequence = ["purple", "darkgoldenrod", "darkgreen"]

    fig = px.bar(
        final_df,
        x="month_year_week",
        y="winning_trade",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=color_discrete_sequence,
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly % of winning trades",
        legend=dict(yanchor="top", y=0.5),
    )

    fig.update_xaxes(tickformat="%b %d\n%Y")
    # Update layout to force x-axis category order (hotfix for a sorting issue)
    fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates})
    return gr.Plot(
        value=fig,
    )