rosacastillo's picture
adding invalid markets graphs
5d93d9f
raw
history blame
2.35 kB
import pandas as pd
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
def plot_daily_dist_invalid_trades(invalid_trades: pd.DataFrame):
"""Function to paint the distribution of daily invalid trades, no matter which market"""
plot = sns.histplot(data=invalid_trades, x="creation_date", kde=True)
plt.xticks(rotation=45, ha="right")
plt.xlabel("Creation date")
plt.ylabel("Daily number of invalid trades")
plt.title("Distribution of daily invalid trades over time")
return gr.Plot(value=plot.get_figure())
def plot_daily_nr_invalid_markets(invalid_trades: pd.DataFrame):
"""Function to paint the number of invalid markets over time"""
daily_invalid_markets = (
invalid_trades.groupby("creation_date")
.agg(trades_count=("title", "count"), nr_markets=("title", "nunique"))
.reset_index()
)
sns.set_theme(palette="viridis")
plot = sns.lineplot(data=daily_invalid_markets, x="creation_date", y="nr_markets")
plt.xticks(rotation=45, ha="right")
plt.xlabel("Creation date")
plt.ylabel("Daily number of invalid markets")
plt.title("Evolution of daily invalid markets over time")
return gr.Plot(value=plot.get_figure())
def plot_ratio_invalid_trades_per_market(invalid_trades: pd.DataFrame):
"""Function to paint the number of invalid trades that the same market accummulates"""
cat = invalid_trades["title"]
codes, uniques = pd.factorize(cat)
# add the IDs as a new column to the original dataframe
invalid_trades["title_id"] = codes
plot = sns.displot(invalid_trades, x="title_id")
plt.xlabel("market id")
plt.ylabel("Total number of invalid trades by market")
plt.title("Distribution of invalid trades per market")
return gr.Plot(value=plot.get_figure())
def plot_top_invalid_markets(invalid_trades: pd.DataFrame):
"""Function to paint the top markets with the highest number of invalid trades"""
top_invalid_markets = invalid_trades.title.value_counts().reset_index()
top_invalid_markets.rename(columns={"count": "nr_invalid_trades"}, inplace=True)
plt.figure(figsize=(25, 10))
plot = sns.barplot(
top_invalid_markets,
x="nr_invalid_trades",
y="title",
hue="title",
dodge=False,
)
return gr.Plot(value=plot.get_figure())