Commit
·
ccf1803
1
Parent(s):
58ed767
adding tools file
Browse files- data/tools.parquet +2 -2
- notebooks/markets_analysis.ipynb +204 -2
- notebooks/tools_accuracy.ipynb +42 -2
data/tools.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c76ee1cf2a3cd51f434b4d591f747c307d90f20f5a347fd3aab36a0b5eab08c
|
3 |
+
size 592980860
|
notebooks/markets_analysis.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -13,6 +13,27 @@
|
|
13 |
"sns.set_style(\"darkgrid\")"
|
14 |
]
|
15 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
{
|
17 |
"cell_type": "code",
|
18 |
"execution_count": 2,
|
@@ -31,6 +52,187 @@
|
|
31 |
"markets = pd.read_parquet('../data/fpmms.parquet')"
|
32 |
]
|
33 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
{
|
35 |
"cell_type": "code",
|
36 |
"execution_count": 4,
|
@@ -1356,7 +1558,7 @@
|
|
1356 |
],
|
1357 |
"metadata": {
|
1358 |
"kernelspec": {
|
1359 |
-
"display_name": "
|
1360 |
"language": "python",
|
1361 |
"name": "python3"
|
1362 |
},
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
13 |
"sns.set_style(\"darkgrid\")"
|
14 |
]
|
15 |
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 7,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [
|
21 |
+
{
|
22 |
+
"ename": "ModuleNotFoundError",
|
23 |
+
"evalue": "No module named 'scripts'",
|
24 |
+
"output_type": "error",
|
25 |
+
"traceback": [
|
26 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
27 |
+
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
28 |
+
"Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mscripts\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mget_mech_info\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m update_fpmmTrades_parquet\n",
|
29 |
+
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'scripts'"
|
30 |
+
]
|
31 |
+
}
|
32 |
+
],
|
33 |
+
"source": [
|
34 |
+
"from scripts.get_mech_info import update_fpmmTrades_parquet"
|
35 |
+
]
|
36 |
+
},
|
37 |
{
|
38 |
"cell_type": "code",
|
39 |
"execution_count": 2,
|
|
|
52 |
"markets = pd.read_parquet('../data/fpmms.parquet')"
|
53 |
]
|
54 |
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 4,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"trades_data = pd.read_parquet('../tmp/fpmmTrades.parquet')"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": null,
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"trades_filename = \"new_fpmmTrades.parquet\""
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": 8,
|
76 |
+
"metadata": {},
|
77 |
+
"outputs": [],
|
78 |
+
"source": [
|
79 |
+
"new_trades = pd.read_parquet(\"../tmp/new_fpmmTrades.parquet\")"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"execution_count": 9,
|
85 |
+
"metadata": {},
|
86 |
+
"outputs": [],
|
87 |
+
"source": [
|
88 |
+
"merge_df = pd.concat([trades_data, new_trades], ignore_index=True)"
|
89 |
+
]
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "code",
|
93 |
+
"execution_count": 10,
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [],
|
96 |
+
"source": [
|
97 |
+
"merge_df[\"fpmm.arbitrationOccurred\"] = merge_df[\"fpmm.arbitrationOccurred\"].astype(\n",
|
98 |
+
" bool\n",
|
99 |
+
")"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"cell_type": "code",
|
104 |
+
"execution_count": 11,
|
105 |
+
"metadata": {},
|
106 |
+
"outputs": [],
|
107 |
+
"source": [
|
108 |
+
"merge_df[\"fpmm.isPendingArbitration\"] = merge_df[\n",
|
109 |
+
" \"fpmm.isPendingArbitration\"\n",
|
110 |
+
" ].astype(bool)"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": 12,
|
116 |
+
"metadata": {},
|
117 |
+
"outputs": [
|
118 |
+
{
|
119 |
+
"name": "stdout",
|
120 |
+
"output_type": "stream",
|
121 |
+
"text": [
|
122 |
+
"Initial length before removing duplicates in fpmmTrades= 123556\n"
|
123 |
+
]
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"source": [
|
127 |
+
" print(f\"Initial length before removing duplicates in fpmmTrades= {len(merge_df)}\")"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 13,
|
133 |
+
"metadata": {},
|
134 |
+
"outputs": [
|
135 |
+
{
|
136 |
+
"name": "stdout",
|
137 |
+
"output_type": "stream",
|
138 |
+
"text": [
|
139 |
+
"Final length after removing duplicates in fpmmTrades= 117771\n"
|
140 |
+
]
|
141 |
+
}
|
142 |
+
],
|
143 |
+
"source": [
|
144 |
+
"merge_df.drop_duplicates(\"id\", inplace=True)\n",
|
145 |
+
"print(f\"Final length after removing duplicates in fpmmTrades= {len(merge_df)}\")"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": 14,
|
151 |
+
"metadata": {},
|
152 |
+
"outputs": [],
|
153 |
+
"source": [
|
154 |
+
"merge_df.to_parquet(\"../tmp/fpmmTrades.parquet\", index=False)"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"execution_count": null,
|
160 |
+
"metadata": {},
|
161 |
+
"outputs": [],
|
162 |
+
"source": []
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"execution_count": 6,
|
167 |
+
"metadata": {},
|
168 |
+
"outputs": [
|
169 |
+
{
|
170 |
+
"data": {
|
171 |
+
"text/plain": [
|
172 |
+
"Index(['collateralAmount', 'collateralAmountUSD', 'collateralToken',\n",
|
173 |
+
" 'creationTimestamp', 'trader_address', 'feeAmount', 'id',\n",
|
174 |
+
" 'oldOutcomeTokenMarginalPrice', 'outcomeIndex',\n",
|
175 |
+
" 'outcomeTokenMarginalPrice', 'outcomeTokensTraded', 'title',\n",
|
176 |
+
" 'transactionHash', 'type', 'market_creator',\n",
|
177 |
+
" 'fpmm.answerFinalizedTimestamp', 'fpmm.arbitrationOccurred',\n",
|
178 |
+
" 'fpmm.currentAnswer', 'fpmm.id', 'fpmm.isPendingArbitration',\n",
|
179 |
+
" 'fpmm.openingTimestamp', 'fpmm.outcomes', 'fpmm.title',\n",
|
180 |
+
" 'fpmm.condition.id'],\n",
|
181 |
+
" dtype='object')"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
"execution_count": 6,
|
185 |
+
"metadata": {},
|
186 |
+
"output_type": "execute_result"
|
187 |
+
}
|
188 |
+
],
|
189 |
+
"source": [
|
190 |
+
"trades_data.columns"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "code",
|
195 |
+
"execution_count": 5,
|
196 |
+
"metadata": {},
|
197 |
+
"outputs": [
|
198 |
+
{
|
199 |
+
"data": {
|
200 |
+
"text/plain": [
|
201 |
+
"102664"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
"execution_count": 5,
|
205 |
+
"metadata": {},
|
206 |
+
"output_type": "execute_result"
|
207 |
+
}
|
208 |
+
],
|
209 |
+
"source": [
|
210 |
+
"len(trades_data)"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "code",
|
215 |
+
"execution_count": null,
|
216 |
+
"metadata": {},
|
217 |
+
"outputs": [],
|
218 |
+
"source": [
|
219 |
+
"max(fpmmsTra)"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": null,
|
225 |
+
"metadata": {},
|
226 |
+
"outputs": [],
|
227 |
+
"source": []
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"cell_type": "code",
|
231 |
+
"execution_count": null,
|
232 |
+
"metadata": {},
|
233 |
+
"outputs": [],
|
234 |
+
"source": []
|
235 |
+
},
|
236 |
{
|
237 |
"cell_type": "code",
|
238 |
"execution_count": 4,
|
|
|
1558 |
],
|
1559 |
"metadata": {
|
1560 |
"kernelspec": {
|
1561 |
+
"display_name": "hf_dashboards",
|
1562 |
"language": "python",
|
1563 |
"name": "python3"
|
1564 |
},
|
notebooks/tools_accuracy.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -15,13 +15,53 @@
|
|
15 |
},
|
16 |
{
|
17 |
"cell_type": "code",
|
18 |
-
"execution_count":
|
19 |
"metadata": {},
|
20 |
"outputs": [],
|
21 |
"source": [
|
22 |
"tools = pd.read_parquet('../data/tools.parquet')"
|
23 |
]
|
24 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
{
|
26 |
"cell_type": "code",
|
27 |
"execution_count": 4,
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
15 |
},
|
16 |
{
|
17 |
"cell_type": "code",
|
18 |
+
"execution_count": 2,
|
19 |
"metadata": {},
|
20 |
"outputs": [],
|
21 |
"source": [
|
22 |
"tools = pd.read_parquet('../data/tools.parquet')"
|
23 |
]
|
24 |
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 3,
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"data": {
|
32 |
+
"text/plain": [
|
33 |
+
"Timestamp('2024-12-10 07:50:55+0000', tz='UTC')"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"execution_count": 3,
|
37 |
+
"metadata": {},
|
38 |
+
"output_type": "execute_result"
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"source": [
|
42 |
+
"max(tools.request_time)"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 4,
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [
|
50 |
+
{
|
51 |
+
"data": {
|
52 |
+
"text/plain": [
|
53 |
+
"Timestamp('2024-10-13 00:00:30+0000', tz='UTC')"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
"execution_count": 4,
|
57 |
+
"metadata": {},
|
58 |
+
"output_type": "execute_result"
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"source": [
|
62 |
+
"min(tools.request_time)"
|
63 |
+
]
|
64 |
+
},
|
65 |
{
|
66 |
"cell_type": "code",
|
67 |
"execution_count": 4,
|