rosacastillo commited on
Commit
ccf1803
·
1 Parent(s): 58ed767

adding tools file

Browse files
data/tools.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3ba753f3eddd59d0ef1d87ee0a0a51b24a34b1d40ffe73b217481b0bef59e811
3
- size 552698691
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c76ee1cf2a3cd51f434b4d591f747c307d90f20f5a347fd3aab36a0b5eab08c
3
+ size 592980860
notebooks/markets_analysis.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -13,6 +13,27 @@
13
  "sns.set_style(\"darkgrid\")"
14
  ]
15
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  {
17
  "cell_type": "code",
18
  "execution_count": 2,
@@ -31,6 +52,187 @@
31
  "markets = pd.read_parquet('../data/fpmms.parquet')"
32
  ]
33
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  {
35
  "cell_type": "code",
36
  "execution_count": 4,
@@ -1356,7 +1558,7 @@
1356
  ],
1357
  "metadata": {
1358
  "kernelspec": {
1359
- "display_name": "market_creator",
1360
  "language": "python",
1361
  "name": "python3"
1362
  },
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 3,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
13
  "sns.set_style(\"darkgrid\")"
14
  ]
15
  },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": 7,
19
+ "metadata": {},
20
+ "outputs": [
21
+ {
22
+ "ename": "ModuleNotFoundError",
23
+ "evalue": "No module named 'scripts'",
24
+ "output_type": "error",
25
+ "traceback": [
26
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
27
+ "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
28
+ "Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mscripts\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mget_mech_info\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m update_fpmmTrades_parquet\n",
29
+ "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'scripts'"
30
+ ]
31
+ }
32
+ ],
33
+ "source": [
34
+ "from scripts.get_mech_info import update_fpmmTrades_parquet"
35
+ ]
36
+ },
37
  {
38
  "cell_type": "code",
39
  "execution_count": 2,
 
52
  "markets = pd.read_parquet('../data/fpmms.parquet')"
53
  ]
54
  },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": 4,
58
+ "metadata": {},
59
+ "outputs": [],
60
+ "source": [
61
+ "trades_data = pd.read_parquet('../tmp/fpmmTrades.parquet')"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": null,
67
+ "metadata": {},
68
+ "outputs": [],
69
+ "source": [
70
+ "trades_filename = \"new_fpmmTrades.parquet\""
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": 8,
76
+ "metadata": {},
77
+ "outputs": [],
78
+ "source": [
79
+ "new_trades = pd.read_parquet(\"../tmp/new_fpmmTrades.parquet\")"
80
+ ]
81
+ },
82
+ {
83
+ "cell_type": "code",
84
+ "execution_count": 9,
85
+ "metadata": {},
86
+ "outputs": [],
87
+ "source": [
88
+ "merge_df = pd.concat([trades_data, new_trades], ignore_index=True)"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "execution_count": 10,
94
+ "metadata": {},
95
+ "outputs": [],
96
+ "source": [
97
+ "merge_df[\"fpmm.arbitrationOccurred\"] = merge_df[\"fpmm.arbitrationOccurred\"].astype(\n",
98
+ " bool\n",
99
+ ")"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": 11,
105
+ "metadata": {},
106
+ "outputs": [],
107
+ "source": [
108
+ "merge_df[\"fpmm.isPendingArbitration\"] = merge_df[\n",
109
+ " \"fpmm.isPendingArbitration\"\n",
110
+ " ].astype(bool)"
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": 12,
116
+ "metadata": {},
117
+ "outputs": [
118
+ {
119
+ "name": "stdout",
120
+ "output_type": "stream",
121
+ "text": [
122
+ "Initial length before removing duplicates in fpmmTrades= 123556\n"
123
+ ]
124
+ }
125
+ ],
126
+ "source": [
127
+ " print(f\"Initial length before removing duplicates in fpmmTrades= {len(merge_df)}\")"
128
+ ]
129
+ },
130
+ {
131
+ "cell_type": "code",
132
+ "execution_count": 13,
133
+ "metadata": {},
134
+ "outputs": [
135
+ {
136
+ "name": "stdout",
137
+ "output_type": "stream",
138
+ "text": [
139
+ "Final length after removing duplicates in fpmmTrades= 117771\n"
140
+ ]
141
+ }
142
+ ],
143
+ "source": [
144
+ "merge_df.drop_duplicates(\"id\", inplace=True)\n",
145
+ "print(f\"Final length after removing duplicates in fpmmTrades= {len(merge_df)}\")"
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "code",
150
+ "execution_count": 14,
151
+ "metadata": {},
152
+ "outputs": [],
153
+ "source": [
154
+ "merge_df.to_parquet(\"../tmp/fpmmTrades.parquet\", index=False)"
155
+ ]
156
+ },
157
+ {
158
+ "cell_type": "code",
159
+ "execution_count": null,
160
+ "metadata": {},
161
+ "outputs": [],
162
+ "source": []
163
+ },
164
+ {
165
+ "cell_type": "code",
166
+ "execution_count": 6,
167
+ "metadata": {},
168
+ "outputs": [
169
+ {
170
+ "data": {
171
+ "text/plain": [
172
+ "Index(['collateralAmount', 'collateralAmountUSD', 'collateralToken',\n",
173
+ " 'creationTimestamp', 'trader_address', 'feeAmount', 'id',\n",
174
+ " 'oldOutcomeTokenMarginalPrice', 'outcomeIndex',\n",
175
+ " 'outcomeTokenMarginalPrice', 'outcomeTokensTraded', 'title',\n",
176
+ " 'transactionHash', 'type', 'market_creator',\n",
177
+ " 'fpmm.answerFinalizedTimestamp', 'fpmm.arbitrationOccurred',\n",
178
+ " 'fpmm.currentAnswer', 'fpmm.id', 'fpmm.isPendingArbitration',\n",
179
+ " 'fpmm.openingTimestamp', 'fpmm.outcomes', 'fpmm.title',\n",
180
+ " 'fpmm.condition.id'],\n",
181
+ " dtype='object')"
182
+ ]
183
+ },
184
+ "execution_count": 6,
185
+ "metadata": {},
186
+ "output_type": "execute_result"
187
+ }
188
+ ],
189
+ "source": [
190
+ "trades_data.columns"
191
+ ]
192
+ },
193
+ {
194
+ "cell_type": "code",
195
+ "execution_count": 5,
196
+ "metadata": {},
197
+ "outputs": [
198
+ {
199
+ "data": {
200
+ "text/plain": [
201
+ "102664"
202
+ ]
203
+ },
204
+ "execution_count": 5,
205
+ "metadata": {},
206
+ "output_type": "execute_result"
207
+ }
208
+ ],
209
+ "source": [
210
+ "len(trades_data)"
211
+ ]
212
+ },
213
+ {
214
+ "cell_type": "code",
215
+ "execution_count": null,
216
+ "metadata": {},
217
+ "outputs": [],
218
+ "source": [
219
+ "max(fpmmsTra)"
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "code",
224
+ "execution_count": null,
225
+ "metadata": {},
226
+ "outputs": [],
227
+ "source": []
228
+ },
229
+ {
230
+ "cell_type": "code",
231
+ "execution_count": null,
232
+ "metadata": {},
233
+ "outputs": [],
234
+ "source": []
235
+ },
236
  {
237
  "cell_type": "code",
238
  "execution_count": 4,
 
1558
  ],
1559
  "metadata": {
1560
  "kernelspec": {
1561
+ "display_name": "hf_dashboards",
1562
  "language": "python",
1563
  "name": "python3"
1564
  },
notebooks/tools_accuracy.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 2,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
@@ -15,13 +15,53 @@
15
  },
16
  {
17
  "cell_type": "code",
18
- "execution_count": 3,
19
  "metadata": {},
20
  "outputs": [],
21
  "source": [
22
  "tools = pd.read_parquet('../data/tools.parquet')"
23
  ]
24
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  {
26
  "cell_type": "code",
27
  "execution_count": 4,
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [],
8
  "source": [
 
15
  },
16
  {
17
  "cell_type": "code",
18
+ "execution_count": 2,
19
  "metadata": {},
20
  "outputs": [],
21
  "source": [
22
  "tools = pd.read_parquet('../data/tools.parquet')"
23
  ]
24
  },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": 3,
28
+ "metadata": {},
29
+ "outputs": [
30
+ {
31
+ "data": {
32
+ "text/plain": [
33
+ "Timestamp('2024-12-10 07:50:55+0000', tz='UTC')"
34
+ ]
35
+ },
36
+ "execution_count": 3,
37
+ "metadata": {},
38
+ "output_type": "execute_result"
39
+ }
40
+ ],
41
+ "source": [
42
+ "max(tools.request_time)"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": 4,
48
+ "metadata": {},
49
+ "outputs": [
50
+ {
51
+ "data": {
52
+ "text/plain": [
53
+ "Timestamp('2024-10-13 00:00:30+0000', tz='UTC')"
54
+ ]
55
+ },
56
+ "execution_count": 4,
57
+ "metadata": {},
58
+ "output_type": "execute_result"
59
+ }
60
+ ],
61
+ "source": [
62
+ "min(tools.request_time)"
63
+ ]
64
+ },
65
  {
66
  "cell_type": "code",
67
  "execution_count": 4,