cyberosa
commited on
Commit
·
1e8b30d
1
Parent(s):
dac33fe
filter very old markets from the mean graph
Browse files- tabs/dist_gap.py +6 -1
tabs/dist_gap.py
CHANGED
@@ -2,7 +2,7 @@ import pandas as pd
|
|
2 |
import gradio as gr
|
3 |
import matplotlib.pyplot as plt
|
4 |
import seaborn as sns
|
5 |
-
from datetime import datetime, UTC
|
6 |
import plotly.express as px
|
7 |
|
8 |
HEIGHT = 300
|
@@ -60,6 +60,11 @@ def get_avg_gap_time_evolution_grouped_markets(all_markets: pd.DataFrame) -> gr.
|
|
60 |
recent_markets["creation_date"] = pd.to_datetime(
|
61 |
recent_markets["creation_datetime"]
|
62 |
).dt.date
|
|
|
|
|
|
|
|
|
|
|
63 |
avg_dist_gap_perc = (
|
64 |
recent_markets.groupby(["sample_date", "creation_date"])["dist_gap_perc"]
|
65 |
.mean()
|
|
|
2 |
import gradio as gr
|
3 |
import matplotlib.pyplot as plt
|
4 |
import seaborn as sns
|
5 |
+
from datetime import datetime, UTC, date
|
6 |
import plotly.express as px
|
7 |
|
8 |
HEIGHT = 300
|
|
|
60 |
recent_markets["creation_date"] = pd.to_datetime(
|
61 |
recent_markets["creation_datetime"]
|
62 |
).dt.date
|
63 |
+
# Define the cutoff date
|
64 |
+
cutoff_date = date(2024, 1, 1)
|
65 |
+
|
66 |
+
# Filter the DataFrame with very old markets
|
67 |
+
recent_markets = recent_markets[recent_markets["creation_date"] > cutoff_date]
|
68 |
avg_dist_gap_perc = (
|
69 |
recent_markets.groupby(["sample_date", "creation_date"])["dist_gap_perc"]
|
70 |
.mean()
|