cyberosa commited on
Commit
c9eef1d
·
1 Parent(s): 72f2521

Adjusting config of graphs

Browse files
app.py CHANGED
@@ -60,7 +60,7 @@ def get_extreme_cases(live_fpmms: pd.DataFrame):
60
  live_fpmms["id"].isin(markets_with_multiple_samples)
61
  ]
62
  selected_markets.sort_values(by="dist_gap_perc", ascending=False, inplace=True)
63
- return selected_markets.iloc[0].id, selected_markets.iloc[-1].id
64
 
65
 
66
  demo = gr.Blocks()
@@ -77,6 +77,7 @@ with demo:
77
 
78
  with gr.Row():
79
  gr.Markdown("Best case: a market with a low distribution gap metric")
 
80
  gr.Markdown(f"Market id = {best_market_id}")
81
  with gr.Row():
82
  best_market_tokens_dist = get_based_tokens_distribution(
@@ -85,6 +86,7 @@ with demo:
85
 
86
  with gr.Row():
87
  gr.Markdown("Worst case: a market with a high distribution gap metric")
 
88
  gr.Markdown(f"Market id = {worst_market_id}")
89
 
90
  with gr.Row():
 
60
  live_fpmms["id"].isin(markets_with_multiple_samples)
61
  ]
62
  selected_markets.sort_values(by="dist_gap_perc", ascending=False, inplace=True)
63
+ return selected_markets.iloc[-1].id, selected_markets.iloc[0].id
64
 
65
 
66
  demo = gr.Blocks()
 
77
 
78
  with gr.Row():
79
  gr.Markdown("Best case: a market with a low distribution gap metric")
80
+ with gr.Row():
81
  gr.Markdown(f"Market id = {best_market_id}")
82
  with gr.Row():
83
  best_market_tokens_dist = get_based_tokens_distribution(
 
86
 
87
  with gr.Row():
88
  gr.Markdown("Worst case: a market with a high distribution gap metric")
89
+ with gr.Row():
90
  gr.Markdown(f"Market id = {worst_market_id}")
91
 
92
  with gr.Row():
notebooks/analysis_of_markets_data.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
tabs/dist_gap.py CHANGED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import gradio as gr
3
+ import matplotlib.pyplot as plt
4
+ import seaborn as sns
5
+ from seaborn import FacetGrid
6
+ import plotly.express as px
7
+
8
+
9
+ def plot_top_best_behaviour_markets(markets_data: pd.DataFrame):
10
+ """Function to paint the top markets with the lowest metric of distribution gap"""
11
+ sorted_data = markets_data.sort_values(by="dist_gap_perc", ascending=False)
12
+ top_best_markets = sorted_data[["title", "sample_datetime", "dist_gap_perc"]].head(
13
+ 5
14
+ )
15
+ return gr.DataFrame(top_best_markets)
tabs/tokens_votes_dist.py CHANGED
@@ -8,6 +8,8 @@ import plotly.express as px
8
 
9
  def get_based_tokens_distribution(market_id: str, all_markets: pd.DataFrame):
10
  """Function to paint the evolution of the probability of the outcomes based on the tokens distributions over time"""
 
 
11
  selected_market = all_markets.loc[all_markets["id"] == market_id]
12
  ax = selected_market.plot(
13
  x="sample_datetime",
@@ -18,7 +20,7 @@ def get_based_tokens_distribution(market_id: str, all_markets: pd.DataFrame):
18
  )
19
  # add overall title
20
  plt.title(
21
- "Outcomes probability over time based on tokens distributions", fontsize=16
22
  )
23
 
24
  # add axis titles
@@ -36,6 +38,8 @@ def get_based_tokens_distribution(market_id: str, all_markets: pd.DataFrame):
36
 
37
  def get_based_votes_distribution(market_id: str, all_markets: pd.DataFrame):
38
  """Function to paint the evolution of the probability of the outcomes based on the votes distributions over time"""
 
 
39
  selected_market = all_markets.loc[all_markets["id"] == market_id]
40
  ax = selected_market.plot(
41
  x="sample_datetime",
@@ -45,9 +49,7 @@ def get_based_votes_distribution(market_id: str, all_markets: pd.DataFrame):
45
  stacked=True,
46
  )
47
  # add overall title
48
- plt.title(
49
- "Outcomes probability over time based on votes distributions", fontsize=16
50
- )
51
 
52
  # add axis titles
53
  plt.xlabel("Sample date")
 
8
 
9
  def get_based_tokens_distribution(market_id: str, all_markets: pd.DataFrame):
10
  """Function to paint the evolution of the probability of the outcomes based on the tokens distributions over time"""
11
+ sns.set_style("darkgrid")
12
+ sns.set_theme(palette="viridis")
13
  selected_market = all_markets.loc[all_markets["id"] == market_id]
14
  ax = selected_market.plot(
15
  x="sample_datetime",
 
20
  )
21
  # add overall title
22
  plt.title(
23
+ "Outcomes probability over time based on tokens distributions", fontsize=8
24
  )
25
 
26
  # add axis titles
 
38
 
39
  def get_based_votes_distribution(market_id: str, all_markets: pd.DataFrame):
40
  """Function to paint the evolution of the probability of the outcomes based on the votes distributions over time"""
41
+ sns.set_style("darkgrid")
42
+ sns.set_theme(palette="viridis")
43
  selected_market = all_markets.loc[all_markets["id"] == market_id]
44
  ax = selected_market.plot(
45
  x="sample_datetime",
 
49
  stacked=True,
50
  )
51
  # add overall title
52
+ plt.title("Outcomes probability over time based on votes distributions", fontsize=8)
 
 
53
 
54
  # add axis titles
55
  plt.xlabel("Sample date")