cyberosa
commited on
Commit
·
c9eef1d
1
Parent(s):
72f2521
Adjusting config of graphs
Browse files- app.py +3 -1
- notebooks/analysis_of_markets_data.ipynb +0 -0
- tabs/dist_gap.py +15 -0
- tabs/tokens_votes_dist.py +6 -4
app.py
CHANGED
@@ -60,7 +60,7 @@ def get_extreme_cases(live_fpmms: pd.DataFrame):
|
|
60 |
live_fpmms["id"].isin(markets_with_multiple_samples)
|
61 |
]
|
62 |
selected_markets.sort_values(by="dist_gap_perc", ascending=False, inplace=True)
|
63 |
-
return selected_markets.iloc[
|
64 |
|
65 |
|
66 |
demo = gr.Blocks()
|
@@ -77,6 +77,7 @@ with demo:
|
|
77 |
|
78 |
with gr.Row():
|
79 |
gr.Markdown("Best case: a market with a low distribution gap metric")
|
|
|
80 |
gr.Markdown(f"Market id = {best_market_id}")
|
81 |
with gr.Row():
|
82 |
best_market_tokens_dist = get_based_tokens_distribution(
|
@@ -85,6 +86,7 @@ with demo:
|
|
85 |
|
86 |
with gr.Row():
|
87 |
gr.Markdown("Worst case: a market with a high distribution gap metric")
|
|
|
88 |
gr.Markdown(f"Market id = {worst_market_id}")
|
89 |
|
90 |
with gr.Row():
|
|
|
60 |
live_fpmms["id"].isin(markets_with_multiple_samples)
|
61 |
]
|
62 |
selected_markets.sort_values(by="dist_gap_perc", ascending=False, inplace=True)
|
63 |
+
return selected_markets.iloc[-1].id, selected_markets.iloc[0].id
|
64 |
|
65 |
|
66 |
demo = gr.Blocks()
|
|
|
77 |
|
78 |
with gr.Row():
|
79 |
gr.Markdown("Best case: a market with a low distribution gap metric")
|
80 |
+
with gr.Row():
|
81 |
gr.Markdown(f"Market id = {best_market_id}")
|
82 |
with gr.Row():
|
83 |
best_market_tokens_dist = get_based_tokens_distribution(
|
|
|
86 |
|
87 |
with gr.Row():
|
88 |
gr.Markdown("Worst case: a market with a high distribution gap metric")
|
89 |
+
with gr.Row():
|
90 |
gr.Markdown(f"Market id = {worst_market_id}")
|
91 |
|
92 |
with gr.Row():
|
notebooks/analysis_of_markets_data.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tabs/dist_gap.py
CHANGED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import gradio as gr
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import seaborn as sns
|
5 |
+
from seaborn import FacetGrid
|
6 |
+
import plotly.express as px
|
7 |
+
|
8 |
+
|
9 |
+
def plot_top_best_behaviour_markets(markets_data: pd.DataFrame):
|
10 |
+
"""Function to paint the top markets with the lowest metric of distribution gap"""
|
11 |
+
sorted_data = markets_data.sort_values(by="dist_gap_perc", ascending=False)
|
12 |
+
top_best_markets = sorted_data[["title", "sample_datetime", "dist_gap_perc"]].head(
|
13 |
+
5
|
14 |
+
)
|
15 |
+
return gr.DataFrame(top_best_markets)
|
tabs/tokens_votes_dist.py
CHANGED
@@ -8,6 +8,8 @@ import plotly.express as px
|
|
8 |
|
9 |
def get_based_tokens_distribution(market_id: str, all_markets: pd.DataFrame):
|
10 |
"""Function to paint the evolution of the probability of the outcomes based on the tokens distributions over time"""
|
|
|
|
|
11 |
selected_market = all_markets.loc[all_markets["id"] == market_id]
|
12 |
ax = selected_market.plot(
|
13 |
x="sample_datetime",
|
@@ -18,7 +20,7 @@ def get_based_tokens_distribution(market_id: str, all_markets: pd.DataFrame):
|
|
18 |
)
|
19 |
# add overall title
|
20 |
plt.title(
|
21 |
-
"Outcomes probability over time based on tokens distributions", fontsize=
|
22 |
)
|
23 |
|
24 |
# add axis titles
|
@@ -36,6 +38,8 @@ def get_based_tokens_distribution(market_id: str, all_markets: pd.DataFrame):
|
|
36 |
|
37 |
def get_based_votes_distribution(market_id: str, all_markets: pd.DataFrame):
|
38 |
"""Function to paint the evolution of the probability of the outcomes based on the votes distributions over time"""
|
|
|
|
|
39 |
selected_market = all_markets.loc[all_markets["id"] == market_id]
|
40 |
ax = selected_market.plot(
|
41 |
x="sample_datetime",
|
@@ -45,9 +49,7 @@ def get_based_votes_distribution(market_id: str, all_markets: pd.DataFrame):
|
|
45 |
stacked=True,
|
46 |
)
|
47 |
# add overall title
|
48 |
-
plt.title(
|
49 |
-
"Outcomes probability over time based on votes distributions", fontsize=16
|
50 |
-
)
|
51 |
|
52 |
# add axis titles
|
53 |
plt.xlabel("Sample date")
|
|
|
8 |
|
9 |
def get_based_tokens_distribution(market_id: str, all_markets: pd.DataFrame):
|
10 |
"""Function to paint the evolution of the probability of the outcomes based on the tokens distributions over time"""
|
11 |
+
sns.set_style("darkgrid")
|
12 |
+
sns.set_theme(palette="viridis")
|
13 |
selected_market = all_markets.loc[all_markets["id"] == market_id]
|
14 |
ax = selected_market.plot(
|
15 |
x="sample_datetime",
|
|
|
20 |
)
|
21 |
# add overall title
|
22 |
plt.title(
|
23 |
+
"Outcomes probability over time based on tokens distributions", fontsize=8
|
24 |
)
|
25 |
|
26 |
# add axis titles
|
|
|
38 |
|
39 |
def get_based_votes_distribution(market_id: str, all_markets: pd.DataFrame):
|
40 |
"""Function to paint the evolution of the probability of the outcomes based on the votes distributions over time"""
|
41 |
+
sns.set_style("darkgrid")
|
42 |
+
sns.set_theme(palette="viridis")
|
43 |
selected_market = all_markets.loc[all_markets["id"] == market_id]
|
44 |
ax = selected_market.plot(
|
45 |
x="sample_datetime",
|
|
|
49 |
stacked=True,
|
50 |
)
|
51 |
# add overall title
|
52 |
+
plt.title("Outcomes probability over time based on votes distributions", fontsize=8)
|
|
|
|
|
53 |
|
54 |
# add axis titles
|
55 |
plt.xlabel("Sample date")
|