File size: 20,911 Bytes
322b74c
 
07d589f
322b74c
 
 
 
 
 
 
 
07d589f
322b74c
07d589f
322b74c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import requests
import pandas as pd
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import json
from web3 import Web3
from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations
from app_value_locked import fetch_daily_value_locked
import os

OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL')

# Initialize a Web3 instance
web3 = Web3(Web3.HTTPProvider(OPTIMISM_RPC_URL))

# Check if connection is successful
if not web3.is_connected():
    raise Exception("Failed to connect to the Optimism network.")

# Contract address
contract_address = '0x3d77596beb0f130a4415df3D2D8232B3d3D31e44'

# Load the ABI from the provided JSON file
with open('./contracts/service_registry_abi.json', 'r') as abi_file:
    contract_abi = json.load(abi_file)

# Now you can create the contract
service_registry = web3.eth.contract(address=contract_address, abi=contract_abi)

def get_transfers(integrator: str, wallet: str) -> str:
    url = f"https://li.quest/v1/analytics/transfers?integrator={integrator}&wallet={wallet}"
    headers = {"accept": "application/json"}
    response = requests.get(url, headers=headers)
    return response.json()

def load_activity_checker_contract(w3, staking_token_address):
    """
    Loads the Staking Token and Activity Checker contracts.

    :param w3: Web3 instance
    :param staking_token_address: Address of the staking token contract
    :return: Tuple of (Staking Token contract instance, Activity Checker contract instance)
    """
    try:
        # Load the ABI file for the Staking Token contract
        with open('./contracts/StakingToken.json', "r", encoding="utf-8") as file:
            staking_token_data = json.load(file)
        
        staking_token_abi = staking_token_data.get("abi", [])

        # Create the Staking Token contract instance
        staking_token_contract = w3.eth.contract(address=staking_token_address, abi=staking_token_abi)
        
        # Get the activity checker contract address from staking_token_contract
        activity_checker_address = staking_token_contract.functions.activityChecker().call()

        # Load the ABI file for the Activity Checker contract
        with open('./contracts/StakingActivityChecker.json', "r", encoding="utf-8") as file:
            activity_checker_data = json.load(file)
        
        activity_checker_abi = activity_checker_data.get("abi", [])

        # Create the Activity Checker contract instance
        activity_checker_contract = w3.eth.contract(address=activity_checker_address, abi=activity_checker_abi)
        
        return staking_token_contract, activity_checker_contract
    
    except Exception as e:
        print(f"An error occurred while loading the contracts: {e}")
        raise


def fetch_and_aggregate_transactions():
    total_services = service_registry.functions.totalSupply().call()
    aggregated_transactions = []
    daily_agent_counts = {}
    daily_agents_with_transactions = {}

    _staking_token_contract, activity_checker_contract = load_activity_checker_contract(web3, '0x88996bbdE7f982D93214881756840cE2c77C4992')

    for service_id in range(1, total_services + 1):
        service = service_registry.functions.getService(service_id).call()
        
        # Extract the list of agent IDs from the service data
        agent_ids = service[-1]  # Assuming the last element is the list of agent IDs

        # Check if 25 is in the list of agent IDs
        if 25 in agent_ids:
            agent_address = service_registry.functions.getAgentInstances(service_id).call()[1][0]
            response_transfers = get_transfers("valory", agent_address)
            transfers = response_transfers.get("transfers", [])
            if isinstance(transfers, list):
                aggregated_transactions.extend(transfers)
        
            # Track the daily number of agents
            creation_event = service_registry.events.CreateService.create_filter(
                from_block=0, argument_filters={'serviceId': service_id, 'configHash': service[2]}
            ).get_all_entries()
            
            if creation_event:
                block_number = creation_event[0]['blockNumber']
                block = web3.eth.get_block(block_number)
                creation_timestamp = datetime.fromtimestamp(block['timestamp'])
                date_str = creation_timestamp.strftime('%Y-%m-%d')
                print("date_str",date_str)
                if date_str not in daily_agent_counts:
                    daily_agent_counts[date_str] = set()
                if date_str not in daily_agents_with_transactions:
                    daily_agents_with_transactions[date_str] = set()

                service_safe = service[1]
                print("agent_address",agent_address,"service_safe",service_safe)
                multisig_nonces = activity_checker_contract.functions.getMultisigNonces(service_safe).call()[0]
                if multisig_nonces > 0:
                    daily_agents_with_transactions[date_str].add(agent_address)
                daily_agent_counts[date_str].add(agent_address)
    
    # Convert set to count
    daily_agent_counts = {date: len(agents) for date, agents in daily_agent_counts.items()}
    daily_agents_with_transactions = {date: len(agents) for date, agents in daily_agents_with_transactions.items()}
    return aggregated_transactions, daily_agent_counts, daily_agents_with_transactions

# Function to parse the transaction data and prepare it for visualization
def process_transactions_and_agents(data):
    transactions, daily_agent_counts, daily_agents_with_transactions = data

    # Convert the data into a pandas DataFrame for easy manipulation
    rows = []
    for tx in transactions:
        # Normalize amounts
        sending_amount = float(tx["sending"]["amount"]) / (10 ** tx["sending"]["token"]["decimals"])
        receiving_amount = float(tx["receiving"]["amount"]) / (10 ** tx["receiving"]["token"]["decimals"])

        # Convert timestamps to datetime objects
        sending_timestamp = datetime.utcfromtimestamp(tx["sending"]["timestamp"])
        receiving_timestamp = datetime.utcfromtimestamp(tx["receiving"]["timestamp"])

        # Prepare row data
        rows.append({
            "transactionId": tx["transactionId"],
            "from_address": tx["fromAddress"],
            "to_address": tx["toAddress"],
            "sending_chain": tx["sending"]["chainId"],
            "receiving_chain": tx["receiving"]["chainId"],
            "sending_token_symbol": tx["sending"]["token"]["symbol"],
            "receiving_token_symbol": tx["receiving"]["token"]["symbol"],
            "sending_amount": sending_amount,
            "receiving_amount": receiving_amount,
            "sending_amount_usd": float(tx["sending"]["amountUSD"]),
            "receiving_amount_usd": float(tx["receiving"]["amountUSD"]),
            "sending_gas_used": int(tx["sending"]["gasUsed"]),
            "receiving_gas_used": int(tx["receiving"]["gasUsed"]),
            "sending_timestamp": sending_timestamp,
            "receiving_timestamp": receiving_timestamp,
            "date": sending_timestamp.date(),  # Group by day
            "week": sending_timestamp.strftime('%Y-%m-%d')  # Group by week
        })
    
    df_transactions = pd.DataFrame(rows)
    df_agents = pd.DataFrame(list(daily_agent_counts.items()), columns=['date', 'agent_count'])
    df_agents_with_transactions = pd.DataFrame(list(daily_agents_with_transactions.items()), columns=['date', 'agent_count_with_transactions'])

    # Convert the date column to datetime
    df_agents['date'] = pd.to_datetime(df_agents['date'])
    df_agents_with_transactions['date'] = pd.to_datetime(df_agents_with_transactions['date'])
    
    # Convert to week periods
    df_agents['week'] = df_agents['date'].dt.to_period('W').apply(lambda r: r.start_time)
    df_agents_with_transactions['week'] = df_agents_with_transactions['date'].dt.to_period('W').apply(lambda r: r.start_time)
    
    # Group by week
    df_agents_weekly = df_agents[['week', 'agent_count']].groupby('week').sum().reset_index()
    df_agents_with_transactions_weekly = df_agents_with_transactions[['week', 'agent_count_with_transactions']].groupby('week').sum().reset_index()

    return df_transactions, df_agents_weekly, df_agents_with_transactions_weekly, df_agents_with_transactions

# Function to create visualizations based on the metrics
def create_visualizations():
    transactions_data = fetch_and_aggregate_transactions()
    df_transactions, df_agents_weekly, df_agents_with_transactions_weekly, df_agents_with_transactions = process_transactions_and_agents(transactions_data)
    # Map chain IDs to chain names

        # Fetch daily value locked data
    df_tvl = fetch_daily_value_locked()

    # Calculate total value locked per chain per day
    df_tvl["total_value_locked_usd"] = df_tvl["amount0_usd"] + df_tvl["amount1_usd"]
    df_tvl_daily = df_tvl.groupby(["date", "chain_name"])["total_value_locked_usd"].sum().reset_index()
    df_tvl_daily['date'] = pd.to_datetime(df_tvl_daily['date'])

    # Filter out dates with zero total value locked
    df_tvl_daily = df_tvl_daily[df_tvl_daily["total_value_locked_usd"] > 0]
    chain_name_map = {
        "optimism": "Optimism",
        "base": "Base",
        "ethereum": "Ethereum"
    }
    df_tvl_daily["chain_name"] = df_tvl_daily["chain_name"].map(chain_name_map)
    
    # Plot total value locked
    fig_tvl = px.bar(
        df_tvl_daily,
        x="date",
        y="total_value_locked_usd",
        color="chain_name",
        opacity=0.7,
        title="Total Volume Invested in Pools in Different Chains Daily",
        labels={"date": "Date","chain_name": "Transaction Chain", "total_value_locked_usd": "Total Volume Invested (USD)"},
        barmode='stack',
        color_discrete_map={
            "Optimism": "blue",
            "Base": "purple",
            "Ethereum": "darkgreen"
        }
    )
    fig_tvl.update_layout(
        xaxis_title=None,
        yaxis=dict(tickmode='linear', tick0=0, dtick=1),
        xaxis=dict(
            tickmode='array',
            tickvals=df_tvl_daily['date'],
            ticktext=df_tvl_daily['date'].dt.strftime('%b %d'),
            tickangle=-45,
        ),
        bargap=0.6,  # Increase gap between bar groups (0-1)
        bargroupgap=0.1,  # Decrease gap between bars in a group (0-1)
        height=600, # Specify width to prevent bars from being too wide
        margin=dict(l=50, r=50, t=50, b=50),  # Add margins
        showlegend=True,
        template='plotly_white'
    )
    fig_tvl.update_xaxes(tickformat="%b %d") 
    

    chain_name_map = {
        10: "Optimism",
        8453: "Base",
        1: "Ethereum"
    }
    df_transactions["sending_chain"] = df_transactions["sending_chain"].map(chain_name_map)
    df_transactions["receiving_chain"] = df_transactions["receiving_chain"].map(chain_name_map)

    # Ensure that chain IDs are strings for consistent grouping
    df_transactions["sending_chain"] = df_transactions["sending_chain"].astype(str)
    df_transactions["receiving_chain"] = df_transactions["receiving_chain"].astype(str)
    df_transactions['date'] = pd.to_datetime(df_transactions['date'])

    # Identify swap transactions
    df_transactions["is_swap"] = df_transactions.apply(lambda x: x["sending_token_symbol"] != x["receiving_token_symbol"], axis=1)

    # Total swaps per chain per day
    swaps_per_chain = df_transactions[df_transactions["is_swap"]].groupby(["date", "sending_chain"]).size().reset_index(name="swap_count")
    fig_swaps_chain = px.bar(
        swaps_per_chain,
        x="date",
        y="swap_count",
        color="sending_chain",
        title="Chain Daily Activity: Swaps",
        labels={"sending_chain": "Transaction Chain", "swap_count": "Daily Swap Nr"},
        barmode="stack",
        opacity=0.7,
        color_discrete_map={
            "Optimism": "blue",
            "Ethereum": "darkgreen",
            "Base": "purple"
        }
    )
    fig_swaps_chain.update_layout(
        xaxis_title="Date",
        yaxis_title="Daily Swap Count",
        yaxis=dict(tickmode='linear', tick0=0, dtick=1),
        xaxis=dict(
            tickmode='array',
            tickvals=[d for d in swaps_per_chain['date'] if d.weekday() == 0],  # Show only Mondays
            ticktext=[d.strftime('%m-%d') for d in swaps_per_chain['date'] if d.weekday() == 0],
            tickangle=-45,
        ),
        bargap=0.6,  # Increase gap between bar groups (0-1)
        bargroupgap=0.1,  # Decrease gap between bars in a group (0-1)
        height=600, # Specify width to prevent bars from being too wide
        margin=dict(l=50, r=50, t=50, b=50),  # Add margins
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="right",
            x=0.99
        ),
        template='plotly_white'
    )
    fig_swaps_chain.update_xaxes(tickformat="%m-%d")

    # Identify bridge transactions
    # Identify bridge transactions
    df_transactions["is_bridge"] = df_transactions.apply(lambda x: x["sending_chain"] != x["receiving_chain"], axis=1)

    # Total bridges per chain per day
    bridges_per_chain = df_transactions[df_transactions["is_bridge"]].groupby(["date", "sending_chain"]).size().reset_index(name="bridge_count")
    fig_bridges_chain = px.bar(
        bridges_per_chain,
        x="date",
        y="bridge_count",
        color="sending_chain",
        title="Chain Daily Activity: Bridges",
        labels={"sending_chain": "Transaction Chain", "bridge_count": "Daily Bridge Nr"},
        barmode="stack",
        opacity=0.7,
        color_discrete_map={
            "Optimism": "blue",
            "Ethereum": "darkgreen",
            "Base": "purple"
        }
    )
    fig_bridges_chain.update_layout(
        xaxis_title="Date",
        yaxis_title="Daily Bridge Count",
        yaxis=dict(tickmode='linear', tick0=0, dtick=1),
        xaxis=dict(
            tickmode='array',
            tickvals=[d for d in bridges_per_chain['date'] if d.weekday() == 0],  # Show only Mondays
            ticktext=[d.strftime('%m-%d') for d in bridges_per_chain['date'] if d.weekday() == 0],
            tickangle=-45,
        ),
        bargap=0.6,  # Increase gap between bar groups (0-1)
        bargroupgap=0.1,  # Decrease gap between bars in a group (0-1)
        height=600,  # Specify width to prevent bars from being too wide
        margin=dict(l=50, r=50, t=50, b=50),  # Add margins
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="right",
            x=0.99
        ),
        template='plotly_white'
    )
    fig_bridges_chain.update_xaxes(tickformat="%m-%d")

    # Nr of agents registered daily and weekly
    # Convert 'date' column to datetime
    df_agents_with_transactions['date'] = pd.to_datetime(df_agents_with_transactions['date'])

    # Calculate daily number of agents registered
    daily_agents_df = df_agents_with_transactions.groupby('date').size().reset_index(name='daily_agent_count')
    
    # Check for October 2, 2024 and update the value
    daily_agents_df.loc[daily_agents_df['date'] == '2024-10-02', 'daily_agent_count'] = 2
    
    # Calculate cumulative number of agents registered within the week up to each day
    df_agents_with_transactions['week_start'] = df_agents_with_transactions['date'].dt.to_period("W").apply(lambda r: r.start_time)
    cumulative_agents_df = df_agents_with_transactions.groupby(['week_start', 'date']).size().groupby(level=0).cumsum().reset_index(name='weekly_agent_count')
    
    # Check for October 2, 2024 and update the value
    cumulative_agents_df.loc[cumulative_agents_df['date'] == '2024-10-02', 'weekly_agent_count'] = 2

    # Combine the data to ensure both dataframes align for plotting
    combined_df = pd.merge(daily_agents_df, cumulative_agents_df, on='date', how='left')

    # Create the bar chart with side-by-side bars
    fig_agents_registered = go.Figure(data=[
        go.Bar(
            name='Daily nr of Registered Agents',
            x=combined_df['date'],
            y=combined_df['daily_agent_count'],
            opacity=0.7,
            marker_color='blue'
        ),
        go.Bar(
            name='Total Weekly Nr of Registered Agents',
            x=combined_df['date'],
            y=combined_df['weekly_agent_count'],
            opacity=0.7,
            marker_color='purple'
        )
    ])

    # Update layout to group bars side by side for each day
    fig_agents_registered.update_layout(
        xaxis_title='Date',
        yaxis_title='Number of Agents',
        title="Nr of Agents Registered",
        barmode='group',
        yaxis=dict(tickmode='linear', tick0=0, dtick=1),
        xaxis=dict(
            tickmode='array',
            tickvals=combined_df['date'],
            ticktext=[d.strftime("%b %d") for d in combined_df['date']],
            tickangle=-45
        ),
        bargap=0.6,  # Increase gap between bar groups (0-1)
        height=600,  # Specify width to prevent bars from being too wide
        margin=dict(l=50, r=50, t=50, b=50),  # Add margins
        showlegend=True,
        template='plotly_white'
    )

        # Calculate weekly average daily active agents
    df_agents_with_transactions['day_of_week'] = df_agents_with_transactions['date'].dt.dayofweek
    df_agents_with_transactions_weekly_avg = df_agents_with_transactions.groupby(['week', 'day_of_week'])['agent_count_with_transactions'].mean().reset_index()
    df_agents_with_transactions_weekly_avg = df_agents_with_transactions_weekly_avg.groupby('week')['agent_count_with_transactions'].mean().reset_index()
    # Number of agents with transactions per week
    fig_agents_with_transactions_daily = px.bar(
        df_agents_with_transactions_weekly,
        x="week",
        opacity=0.7,
        y="agent_count_with_transactions",
        title="Daily Active Agents: Weekly Average Nr of agents with at least 1 transaction daily",
        labels={"week": "Week of", "agent_count_with_transactions": "Number of Agents with Transactions"},
        color_discrete_sequence=["darkgreen"]
    )
    fig_agents_with_transactions_daily.update_layout(
        title=dict(
        x=0.5,y=0.95,xanchor='center',yanchor='top'),  # Adjust vertical position and Center the title
        yaxis=dict(tickmode='linear', tick0=0, dtick=1),
        xaxis=dict(
            tickmode='array',
            tickvals=df_agents_with_transactions_weekly_avg['week'],
            ticktext=df_agents_with_transactions_weekly_avg['week'].dt.strftime('%b %d'),
            tickangle=0
        ),
        bargap=0.6,  # Increase gap between bar groups (0-1)
        bargroupgap=0.1,  # Decrease gap between bars in a group (0-1)
        height=600,  # Specify width to prevent bars from being too wide
        margin=dict(l=50, r=50, t=50, b=50),  # Add margins
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="right",
            x=0.99
        )
    )

    return fig_swaps_chain, fig_bridges_chain, fig_agents_registered, fig_agents_with_transactions_daily,fig_tvl

# Gradio interface
def dashboard():
    with gr.Blocks() as demo:
        gr.Markdown("# Valory Transactions Dashboard")
        with gr.Tab("Chain Daily activity"):
            fig_tx_chain = create_transcation_visualizations()
            gr.Plot(fig_tx_chain)

        fig_swaps_chain, fig_bridges_chain, fig_agents_registered, fig_agents_with_transactions_daily,fig_tvl = create_visualizations()    
        #Fetch and display visualizations
        with gr.Tab("Swaps Daily"):
            gr.Plot(fig_swaps_chain)
        
        with gr.Tab("Bridges Daily"):
            #fig_swaps_chain, fig_bridges_chain, fig_agents_daily, fig_agents_with_transactions_daily,fig_tvl = create_visualizations()
            gr.Plot(fig_bridges_chain)
        
        with gr.Tab("Nr of Agents Registered"):
            #fig_swaps_chain, fig_bridges_chain, fig_agents_daily, fig_agents_with_transactions_daily,fig_tvl = create_visualizations()
            gr.Plot(fig_agents_registered)
        
        with gr.Tab("DAA"):
            fig_agents_with_transactions_daily = create_active_agents_visualizations()
            #fig_swaps_chain, fig_bridges_chain, fig_agents_daily, fig_agents_with_transactions_daily,fig_tvl = create_visualizations()
            gr.Plot(fig_agents_with_transactions_daily)

        with gr.Tab("Total Value Locked"):
            #fig_swaps_chain, fig_bridges_chain, fig_agents_daily, fig_agents_with_transactions_daily, fig_tvl,fig_tvl = create_visualizations()
            gr.Plot(fig_tvl) 

    return demo

# Launch the dashboard
if __name__ == "__main__":
    dashboard().launch()