Spaces:
Runtime error
Runtime error
File size: 15,316 Bytes
322b74c 07d589f 322b74c b8d3277 6c49575 b8d3277 39b4e26 b8d3277 322b74c b8d3277 322b74c b8d3277 322b74c b8d3277 322b74c 39b4e26 322b74c b8d3277 d622ffd b8d3277 9a26d72 b8d3277 322b74c b8d3277 322b74c b8d3277 322b74c b8d3277 322b74c b8d3277 322b74c b8d3277 322b74c c744bf3 322b74c 39b4e26 b8d3277 322b74c b8d3277 322b74c b8d3277 322b74c b8d3277 322b74c 27431d4 322b74c b8d3277 27431d4 b8d3277 322b74c b8d3277 322b74c 27431d4 322b74c b8d3277 27431d4 b8d3277 322b74c b8d3277 322b74c b8d3277 13dff28 322b74c 13dff28 b8d3277 13dff28 322b74c 5b3ed4c b8d3277 322b74c 9a26d72 5b3ed4c 13dff28 322b74c 5b3ed4c 322b74c 9a26d72 b8d3277 27431d4 322b74c 9a26d72 322b74c c744bf3 322b74c 43c65c5 322b74c c744bf3 322b74c b8d3277 43c65c5 b8d3277 c744bf3 b8d3277 322b74c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import requests
import pandas as pd
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import json
from web3 import Web3
import os
from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations
# Load environment variables from .env file
# RPC URLs
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL')
MODE_RPC_URL = os.getenv('MODE_RPC_URL')
# Initialize Web3 instances
web3_instances = {
'optimism': Web3(Web3.HTTPProvider(OPTIMISM_RPC_URL)),
'mode': Web3(Web3.HTTPProvider(MODE_RPC_URL))
}
# Contract addresses for service registries
contract_addresses = {
'optimism': '0x3d77596beb0f130a4415df3D2D8232B3d3D31e44',
'mode': '0x3C1fF68f5aa342D296d4DEe4Bb1cACCA912D95fE'
}
# Load the ABI from the provided JSON file
with open('./contracts/service_registry_abi.json', 'r') as abi_file:
contract_abi = json.load(abi_file)
# Create the contract instances
service_registries = {
chain_name: web3.eth.contract(address=contract_addresses[chain_name], abi=contract_abi)
for chain_name, web3 in web3_instances.items()
}
# Check if connections are successful
for chain_name, web3_instance in web3_instances.items():
if not web3_instance.is_connected():
raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.")
else:
print(f"Successfully connected to the {chain_name.capitalize()} network.")
def get_transfers(integrator: str, wallet: str) -> str:
url = f"https://li.quest/v1/analytics/transfers?&wallet={wallet}&fromTimestamp=1726165800"
headers = {"accept": "application/json"}
response = requests.get(url, headers=headers)
return response.json()
def fetch_and_aggregate_transactions():
aggregated_transactions = []
daily_agent_counts = {}
seen_agents = set()
for chain_name, service_registry in service_registries.items():
web3 = web3_instances[chain_name]
total_services = service_registry.functions.totalSupply().call()
for service_id in range(1, total_services + 1):
service = service_registry.functions.getService(service_id).call()
agent_ids = service[-1]
if 40 in agent_ids or 25 in agent_ids:
agent_instance_data = service_registry.functions.getAgentInstances(service_id).call()
agent_addresses = agent_instance_data[1]
if agent_addresses:
agent_address = agent_addresses[0]
response_transfers = get_transfers("valory", agent_address)
transfers = response_transfers.get("transfers", [])
if isinstance(transfers, list):
aggregated_transactions.extend(transfers)
# Track the daily number of agents
current_date = ""
creation_event = service_registry.events.CreateService.create_filter(from_block=0, argument_filters={'serviceId': service_id}).get_all_entries()
if creation_event:
block_number = creation_event[0]['blockNumber']
block = web3.eth.get_block(block_number)
creation_timestamp = datetime.fromtimestamp(block['timestamp'])
date_str = creation_timestamp.strftime('%Y-%m-%d')
current_date = date_str
# Ensure each agent is only counted once based on first registered date
if agent_address not in seen_agents:
seen_agents.add(agent_address)
if date_str not in daily_agent_counts:
daily_agent_counts[date_str] = set()
daily_agent_counts[date_str].add(agent_address)
daily_agent_counts = {date: len(agents) for date, agents in daily_agent_counts.items()}
return aggregated_transactions, daily_agent_counts
# Function to parse the transaction data and prepare it for visualization
def process_transactions_and_agents(data):
transactions, daily_agent_counts = data
# Convert the data into a pandas DataFrame for easy manipulation
rows = []
for tx in transactions:
# Normalize amounts
sending_amount = float(tx["sending"]["amount"]) / (10 ** tx["sending"]["token"]["decimals"])
receiving_amount = float(tx["receiving"]["amount"]) / (10 ** tx["receiving"]["token"]["decimals"])
# Convert timestamps to datetime objects
sending_timestamp = datetime.utcfromtimestamp(tx["sending"]["timestamp"])
receiving_timestamp = datetime.utcfromtimestamp(tx["receiving"]["timestamp"])
# Prepare row data
rows.append({
"transactionId": tx["transactionId"],
"from_address": tx["fromAddress"],
"to_address": tx["toAddress"],
"sending_chain": tx["sending"]["chainId"],
"receiving_chain": tx["receiving"]["chainId"],
"sending_token_symbol": tx["sending"]["token"]["symbol"],
"receiving_token_symbol": tx["receiving"]["token"]["symbol"],
"sending_amount": sending_amount,
"receiving_amount": receiving_amount,
"sending_amount_usd": float(tx["sending"]["amountUSD"]),
"receiving_amount_usd": float(tx["receiving"]["amountUSD"]),
"sending_gas_used": int(tx["sending"]["gasUsed"]),
"receiving_gas_used": int(tx["receiving"]["gasUsed"]),
"sending_timestamp": sending_timestamp,
"receiving_timestamp": receiving_timestamp,
"date": sending_timestamp.date(), # Group by day
"week": sending_timestamp.strftime('%Y-%m-%d') # Group by week
})
df_transactions = pd.DataFrame(rows)
df_transactions = df_transactions.drop_duplicates()
df_agents = pd.DataFrame(list(daily_agent_counts.items()), columns=['date', 'agent_count'])
df_agents['date'] = pd.to_datetime(df_agents['date'])
df_agents['week'] = df_agents['date'].dt.to_period('W').apply(lambda r: r.start_time)
df_agents_weekly = df_agents[['week', 'agent_count']].groupby('week').sum().reset_index()
return df_transactions, df_agents, df_agents_weekly
# Function to create visualizations based on the metrics
def create_visualizations():
transactions_data = fetch_and_aggregate_transactions()
df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data)
# Fetch daily value locked data
df_tvl = pd.read_csv('daily_value_locked.csv')
# Calculate total value locked per chain per day
df_tvl["total_value_locked_usd"] = df_tvl["amount0_usd"] + df_tvl["amount1_usd"]
df_tvl_daily = df_tvl.groupby(["date", "chain_name"])["total_value_locked_usd"].sum().reset_index()
df_tvl_daily['date'] = pd.to_datetime(df_tvl_daily['date'])
# Filter out dates with zero total value locked
df_tvl_daily = df_tvl_daily[df_tvl_daily["total_value_locked_usd"] > 0]
chain_name_map = {
"mode": "Mode",
"base": "Base",
"ethereum": "Ethereum",
"optimism": "Optimism"
}
df_tvl_daily["chain_name"] = df_tvl_daily["chain_name"].map(chain_name_map)
# Plot total value locked
fig_tvl = px.bar(
df_tvl_daily,
x="date",
y="total_value_locked_usd",
color="chain_name",
opacity=0.7,
title="Total Volume Invested in Pools in Different Chains Daily",
labels={"date": "Date","chain_name": "Transaction Chain", "total_value_locked_usd": "Total Volume Invested (USD)"},
barmode='stack',
color_discrete_map={
"Mode": "orange",
"Base": "purple",
"Ethereum": "darkgreen",
"Optimism": "blue"
}
)
fig_tvl.update_layout(
xaxis_title="Date",
yaxis=dict(tickmode='linear', tick0=0, dtick=4),
xaxis=dict(
tickmode='array',
tickvals=df_tvl_daily['date'],
ticktext=df_tvl_daily['date'].dt.strftime('%b %d'),
tickangle=-45,
),
bargap=0.6, # Increase gap between bar groups (0-1)
bargroupgap=0.1, # Decrease gap between bars in a group (0-1)
height=600,
width=1200, # Specify width to prevent bars from being too wide
showlegend=True,
template='plotly_white'
)
fig_tvl.update_xaxes(tickformat="%b %d")
chain_name_map = {
10: "Optimism",
8453: "Base",
1: "Ethereum",
34443: "Mode"
}
df_transactions["sending_chain"] = df_transactions["sending_chain"].map(chain_name_map)
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].map(chain_name_map)
df_transactions["sending_chain"] = df_transactions["sending_chain"].astype(str)
df_transactions["receiving_chain"] = df_transactions["receiving_chain"].astype(str)
df_transactions['date'] = pd.to_datetime(df_transactions['date'])
df_transactions["is_swap"] = df_transactions.apply(lambda x: x["sending_chain"] == x["receiving_chain"], axis=1)
swaps_per_chain = df_transactions[df_transactions["is_swap"]].groupby(["date", "sending_chain"]).size().reset_index(name="swap_count")
fig_swaps_chain = px.bar(
swaps_per_chain,
x="date",
y="swap_count",
color="sending_chain",
title="Chain Daily Activity: Swaps",
labels={"sending_chain": "Transaction Chain", "swap_count": "Daily Swap Nr"},
barmode="stack",
opacity=0.7,
color_discrete_map={
"Optimism": "blue",
"Ethereum": "darkgreen",
"Base": "purple",
"Mode": "orange"
}
)
fig_swaps_chain.update_layout(
xaxis_title="Date",
yaxis_title="Daily Swap Count",
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
xaxis=dict(
tickmode='array',
tickvals=[d for d in swaps_per_chain['date']],
ticktext=[d.strftime('%m-%d') for d in swaps_per_chain['date']],
tickangle=-45,
),
bargap=0.6,
bargroupgap=0.1,
height=600,
width=1200,
margin=dict(l=50, r=50, t=50, b=50),
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="right",
x=0.99
),
template='plotly_white'
)
fig_swaps_chain.update_xaxes(tickformat="%m-%d")
df_transactions["is_bridge"] = df_transactions.apply(lambda x: x["sending_chain"] != x["receiving_chain"], axis=1)
bridges_per_chain = df_transactions[df_transactions["is_bridge"]].groupby(["date", "sending_chain"]).size().reset_index(name="bridge_count")
fig_bridges_chain = px.bar(
bridges_per_chain,
x="date",
y="bridge_count",
color="sending_chain",
title="Chain Daily Activity: Bridges",
labels={"sending_chain": "Transaction Chain", "bridge_count": "Daily Bridge Nr"},
barmode="stack",
opacity=0.7,
color_discrete_map={
"Optimism": "blue",
"Ethereum": "darkgreen",
"Base": "purple",
"Mode": "orange"
}
)
fig_bridges_chain.update_layout(
xaxis_title="Date",
yaxis_title="Daily Bridge Count",
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
xaxis=dict(
tickmode='array',
tickvals=[d for d in bridges_per_chain['date']],
ticktext=[d.strftime('%m-%d') for d in bridges_per_chain['date']],
tickangle=-45,
),
bargap=0.6,
bargroupgap=0.1,
height=600,
width=1200,
margin=dict(l=50, r=50, t=50, b=50),
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="right",
x=0.99
),
template='plotly_white'
)
fig_bridges_chain.update_xaxes(tickformat="%m-%d")
df_agents['date'] = pd.to_datetime(df_agents['date'])
daily_agents_df = df_agents.groupby('date').agg({'agent_count': 'sum'}).reset_index()
daily_agents_df.rename(columns={'agent_count': 'daily_agent_count'}, inplace=True)
# Sort by date to ensure proper running total calculation
daily_agents_df = daily_agents_df.sort_values('date')
# Create week column
daily_agents_df['week'] = daily_agents_df['date'].dt.to_period('W').apply(lambda r: r.start_time)
# Calculate running total within each week
daily_agents_df['running_weekly_total'] = daily_agents_df.groupby('week')['daily_agent_count'].cumsum()
# Create final merged dataframe
weekly_merged_df = daily_agents_df.copy()
adjustment_date = pd.to_datetime('2024-11-15')
weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'daily_agent_count'] -= 1
weekly_merged_df.loc[weekly_merged_df['date'] == adjustment_date, 'running_weekly_total'] -= 1
fig_agents_registered = go.Figure(data=[
go.Bar(
name='Daily nr of Registered Agents',
x=weekly_merged_df['date'].dt.strftime("%b %d"),
y=weekly_merged_df['daily_agent_count'],
opacity=0.7,
marker_color='blue'
),
go.Bar(
name='Weekly Nr of Registered Agents',
x=weekly_merged_df['date'].dt.strftime("%b %d"),
y=weekly_merged_df['running_weekly_total'],
opacity=0.7,
marker_color='purple'
)
])
fig_agents_registered.update_layout(
xaxis_title='Date',
yaxis_title='Number of Agents',
title="Nr of Agents Registered",
barmode='group',
yaxis=dict(tickmode='linear', tick0=0, dtick=1),
xaxis=dict(
categoryorder='array',
categoryarray=weekly_merged_df['date'].dt.strftime("%b %d"),
tickangle=-45
),
bargap=0.3,
height=600,
width=1200,
showlegend=True,
legend=dict(
yanchor="top",
xanchor="right",
),
template='plotly_white',
)
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl
# Gradio interface
def dashboard():
with gr.Blocks() as demo:
gr.Markdown("# Valory Transactions Dashboard")
with gr.Tab("Chain Daily activity"):
fig_tx_chain = create_transcation_visualizations()
gr.Plot(fig_tx_chain)
fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl = create_visualizations()
with gr.Tab("Swaps Daily"):
gr.Plot(fig_swaps_chain)
with gr.Tab("Bridges Daily"):
gr.Plot(fig_bridges_chain)
with gr.Tab("Nr of Agents Registered"):
gr.Plot(fig_agents_registered)
with gr.Tab("DAA"):
fig_agents_with_transactions_daily = create_active_agents_visualizations()
gr.Plot(fig_agents_with_transactions_daily)
with gr.Tab("Total Value Locked"):
gr.Plot(fig_tvl)
return demo
# Launch the dashboard
if __name__ == "__main__":
dashboard().launch() |