optimus-live-dashboard / app_trans_new.py
gauravlochab
chore: Add requirements.txt and restart scripts
322b74c
raw
history blame
17.3 kB
import requests
import pandas as pd
import gradio as gr
import plotly.express as px
from datetime import datetime, timedelta
import plotly.graph_objects as go
import numpy as np
import json
from web3 import Web3
import time
import os
from itertools import product
# RPC URLs
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL')
BASE_RPC_URL = os.getenv('BASE_RPC_URL')
ETH_RPC_URL = os.getenv('ETH_RPC_URL')
# Initialize Web3 instances
print("Initializing Web3 instances...")
web3_optimism = Web3(Web3.HTTPProvider(OPTIMISM_RPC_URL))
web3_base = Web3(Web3.HTTPProvider(BASE_RPC_URL))
web3_eth = Web3(Web3.HTTPProvider(ETH_RPC_URL))
# Contract addresses for service registries
contract_address_optimism = '0x3d77596beb0f130a4415df3D2D8232B3d3D31e44'
contract_address_base = '0x3C1fF68f5aa342D296d4DEe4Bb1cACCA912D95fE'
contract_address_eth = '0x48b6af7B12C71f09e2fC8aF4855De4Ff54e775cA'
# Load the ABI from a local JSON file
with open('./contracts/service_registry_abi.json', 'r') as abi_file:
contract_abi = json.load(abi_file)
# Create the contract instances
service_registry_optimism = web3_optimism.eth.contract(address=contract_address_optimism, abi=contract_abi)
service_registry_base = web3_base.eth.contract(address=contract_address_base, abi=contract_abi)
service_registry_eth = web3_eth.eth.contract(address=contract_address_eth, abi=contract_abi)
print("Service registry contracts loaded.")
# Check if connection is successful
if not web3_optimism.is_connected():
raise Exception("Failed to connect to the Optimism network.")
if not web3_base.is_connected():
raise Exception("Failed to connect to the Base network.")
if not web3_eth.is_connected():
raise Exception("Failed to connect to the ETH network.")
print("Successfully connected to Ethereum, Optimism, and Base networks.")
def fetch_service_safes(web3, registry_contract):
print("\nFetching service safes...")
total_services = registry_contract.functions.totalSupply().call()
print(f"Total services: {total_services}")
service_safes = set()
for service_id in range(1, total_services + 1):
print(f"Processing service ID: {service_id}")
service = registry_contract.functions.getService(service_id).call()
agent_ids = service[-1] # Assuming the last element is the list of agent IDs
print(f"Agent IDs: {agent_ids}")
if 25 in agent_ids:
agent_address = registry_contract.functions.getAgentInstances(service_id).call()
service_safe = service[1]
print(f"Found agent_address: {agent_address}")
print(f"Found service safe: {service_safe}")
service_safes.add(service_safe)
print(f"Total service safes found: {len(service_safes)}")
return service_safes
# Fetch service safes for each network
service_safes_optimism = fetch_service_safes(web3_optimism, service_registry_optimism)
service_safes_base = fetch_service_safes(web3_base, service_registry_base)
service_safes_eth = fetch_service_safes(web3_eth, service_registry_eth)
service_safes_eth = {safe for safe in service_safes_eth if safe.lower() != '0x0000000000000000000000000000000000000000'}
def get_block_range_for_date(chain_id, date_str, api_key, base_url):
"""Get the block range for a specific date."""
target_date = datetime.strptime(date_str, "%Y-%m-%d").date()
start_of_day = datetime.combine(target_date, datetime.min.time())
if target_date == datetime.now().date():
end_of_day = datetime.now() # Use the current time if the target date is today
else:
end_of_day = datetime.combine(target_date, datetime.max.time())
start_timestamp = int(start_of_day.timestamp())
end_timestamp = int(end_of_day.timestamp())
# Get start block
start_response = requests.get(
f"{base_url}?module=block&action=getblocknobytime&timestamp={start_timestamp}&closest=before&apikey={api_key}"
)
if start_response.status_code == 200:
start_data = start_response.json()
start_block = start_data.get('result')
else:
print(f"Error fetching start block for {date_str} on chain {chain_id}")
return None, None
if start_block is None:
print(f"No start block found for chain {chain_id} on {date_str}")
return None, None
print(f"Start block for chain {chain_id} on {date_str}: {start_block}")
# Get end block
time.sleep(1)
end_response = requests.get(
f"{base_url}?module=block&action=getblocknobytime&timestamp={end_timestamp}&closest=before&apikey={api_key}"
)
if end_response.status_code == 200:
end_data = end_response.json()
end_block = end_data.get('result')
else:
print(f"Error fetching end block for {date_str} on chain {chain_id}")
return None, None
if end_block is None:
print(f"No end block found for chain {chain_id} on {date_str}")
return None, None
print(f"End block for chain {chain_id} on {date_str}: {end_block}")
return start_block, end_block
def get_transactions(api_keys, wallet_address, chain_name, start_block, end_block):
"""Retrieve transactions for the given wallet address, chain, and block range using the Etherscan or similar API."""
base_url = {
'optimism': "https://api-optimistic.etherscan.io/api",
'base': "https://api.basescan.org/api",
'ethereum': "https://api.etherscan.io/api"
}.get(chain_name)
if not base_url:
print(f"Invalid chain name: {chain_name}")
return []
params = {
'module': 'account',
'action': 'txlist',
'address': wallet_address,
'startblock': start_block,
'endblock': end_block,
'sort': 'asc',
'apikey': api_keys.get(chain_name)
}
response = requests.get(base_url, params=params)
data = response.json()
time.sleep(1)
if data['status'] != '1':
print(f"Error: {data['message']}")
return []
valid_transactions = [tx for tx in data['result'] if tx['isError'] == '0']
return valid_transactions
def date_range(start_date, end_date):
"""Generates a range of dates from start_date to end_date inclusive."""
start_dt = datetime.strptime(start_date, "%Y-%m-%d")
end_dt = datetime.strptime(end_date, "%Y-%m-%d")
delta = timedelta(days=1)
current_dt = start_dt
while current_dt <= end_dt:
yield current_dt.strftime("%Y-%m-%d")
current_dt += delta
def fetch_transactions():
api_keys = {
'optimism': 'XQ72JA5XZ51QC7TG1W295AAIF4KTV92K1K',
'base': '4BFQMVW1QUKEPVDA4VW711CF4462682CY8',
'ethereum': '3GRYJGX55W3QWCEKGREF4H53AFHCAIVVR7'
}
base_urls = {
10: "https://api-optimistic.etherscan.io/api",
8453: "https://api.basescan.org/api",
1: "https://api.etherscan.io/api"
}
current_date = datetime.today().strftime("%Y-%m-%d")
csv_filename = 'daily_transactions_new.csv'
if os.path.exists(csv_filename):
df_existing = pd.read_csv(csv_filename)
if 'date' in df_existing:
last_date_in_csv = df_existing['date'].max()
else:
df_existing['date'] = pd.to_datetime(df_existing['timestamp']).dt.date
last_date_in_csv = df_existing['date'].max()
else:
df_existing = pd.DataFrame()
last_date_in_csv = '2024-09-19'
start_date = (datetime.strptime(last_date_in_csv, "%Y-%m-%d") + timedelta(days=1)).strftime("%Y-%m-%d")
chains = {
10: ('optimism', service_safes_optimism),
8453: ('base', service_safes_base),
1: ('ethereum', service_safes_eth)
}
all_transactions = df_existing.to_dict('records') if not df_existing.empty else []
for chain_id, (chain_name, service_safes) in chains.items():
base_url = base_urls[chain_id]
api_key = api_keys[chain_name]
for safe_address in service_safes:
print(f"\nProcessing {chain_name.capitalize()} for safe address {safe_address}...")
for single_date in date_range(start_date, current_date):
start_block, end_block = get_block_range_for_date(chain_id, single_date, api_key, base_url)
if start_block is None or end_block is None:
print(f"Skipping date {single_date} for chain {chain_name} due to missing block data.")
continue
print(f"Start Block: {start_block}, End Block: {end_block} for date {single_date}")
transactions = get_transactions(api_keys, safe_address, chain_name, start_block, end_block)
if transactions:
print(f"Found {len(transactions)} transactions on {single_date} for {chain_name.capitalize()} safe address {safe_address}:")
for tx in transactions:
tx_time = datetime.fromtimestamp(int(tx['timeStamp']))
all_transactions.append({
'chain': chain_name,
'safe_address': safe_address,
'date': single_date,
'transaction_hash': tx['hash'],
'timestamp': tx_time,
'from': tx['from'],
'to': tx['to'],
'value_eth': int(tx['value']) / 1e18 # Convert value to ETH
})
else:
print(f"No transactions found for safe address {safe_address} on {single_date} on {chain_name.capitalize()}.")
df_transactions_new = pd.DataFrame(all_transactions)
df_transactions_new.to_csv(csv_filename, index=False)
return df_transactions_new
def create_transcation_visualizations():
df_transactions_new = fetch_transactions()
df_transactions_new['timestamp'] = pd.to_datetime(df_transactions_new['timestamp'])
# Group by date and chain, count transactions
daily_counts = df_transactions_new.groupby([df_transactions_new['timestamp'].dt.date, 'chain']).size().unstack(fill_value=0)
# Ensure required chains are present
chains = ['optimism', 'base', 'ethereum']
for chain in chains:
if chain not in daily_counts.columns:
daily_counts[chain] = 0
daily_counts = daily_counts[chains]
# Read the original data
daily_counts['timestamp'] = daily_counts.index
daily_counts['timestamp'] = pd.to_datetime(daily_counts['timestamp'])
daily_counts = daily_counts.reset_index(drop=True)
# Get min and max dates
min_date = daily_counts['timestamp'].min()
max_date = daily_counts['timestamp'].max()
# Create complete date range
full_date_range = pd.date_range(start=min_date, end=max_date, freq='D')
# Create a new dataframe with all dates
complete_df = pd.DataFrame({'timestamp': full_date_range})
complete_df = complete_df.merge(daily_counts, on='timestamp', how='left')
complete_df = complete_df.fillna(0)
daily_counts = complete_df
# Convert timestamp to datetime
daily_counts['timestamp'] = pd.to_datetime(daily_counts['timestamp'])
# Create a new dataframe with 12-hour slots
new_rows = []
for _, row in daily_counts.iterrows():
# Create first 12-hour slot (0-12)
slot1 = row.copy()
# slot1['timestamp'] = row['timestamp'].replace(hour=0)
# # Create second 12-hour slot (12-24)
new_rows.extend([slot1])
slot2 = row.copy()
if slot2['timestamp'].dayofweek == 6: # 6 represents Sunday
slot2[['optimism', 'base', 'ethereum']] = 0
slot2['timestamp'] = row['timestamp'].replace(hour=12)
new_rows.extend([slot2])
# Create new dataframe with 12-hour slots
hourly_counts = pd.DataFrame(new_rows).sort_values('timestamp')
# Prepare data for plotting
dates = hourly_counts['timestamp'].tolist()
values = hourly_counts[['optimism', 'base', 'ethereum']].to_numpy()
# Create the figure
fig = go.Figure()
# Create arrays for positioning and width
# Convert dates to datetime objects first
date_objects = pd.to_datetime(dates)
# Create numeric indices for x-axis
x_numeric = np.arange(len(dates))
# Create arrays for positioning and width
width_array = []
for i, date in enumerate(date_objects):
width_array.append(1.0) # Full width for other days
# Get Monday indices for tick positions
monday_indices = [i for i, date in enumerate(date_objects) if date.dayofweek == 0]
monday_labels = [date_objects[i].strftime('%m-%d') for i in monday_indices]
# Add traces for each series
fig.add_trace(go.Bar(
name='Optimism',
x=x_numeric,
y=values[:,0],
marker_color='blue',
opacity=0.7,
text=None,
width=width_array,
textposition='none',
))
fig.add_trace(go.Bar(
name='Base',
x=x_numeric,
y=values[:,1],
marker_color='purple',
opacity=0.7,
text=None,
textposition='none',
width=width_array,
))
fig.add_trace(go.Bar(
name='Ethereum',
x=x_numeric,
y=values[:,2],
marker_color='darkgreen',
opacity=0.7,
text=None,
width=width_array,
textposition='none',
))
# Update layout with numeric x-axis
fig.update_layout(
title='Chain Daily Activity : Transactions',
xaxis_title='Date',
yaxis_title='Daily Transactions Count',
barmode='stack',
showlegend=True,
legend_title_text='Transaction Chain',
height=600,
bargap=0,
bargroupgap=0,
xaxis=dict(
tickangle=-45,
tickmode='array',
ticktext=monday_labels,
tickvals=monday_indices,
),
template='plotly_white',
hoverlabel=dict(
font_size=12,
),
)
# Update hover template
for trace in fig.data:
trace.update(
hovertemplate="<b>Date:</b> %{text}<br>" +
"<b>" + trace.name + ":</b> %{y}<br>" +
"<extra></extra>",
text=[d.strftime('%Y-%m-%d') for d in date_objects] # Add date text for hover
)
# Show the plot
return fig
def create_active_agents_visualizations():
df_transactions_new = fetch_transactions()
df_transactions_new['timestamp'] = pd.to_datetime(df_transactions_new['timestamp'])
# Extract week and day information
df_transactions_new['week_start'] = df_transactions_new['timestamp'].dt.to_period('W').apply(lambda r: r.start_time)
df_transactions_new['weekday'] = df_transactions_new['timestamp'].dt.weekday
# Count unique agents per day
daily_agents = df_transactions_new.groupby(['week_start', 'weekday'])['from'].nunique().reset_index()
# Generate all possible combinations of week_start and weekday up to today
today = datetime.today()
yesterday = today - timedelta(days=1)
valid_weekdays = [(ws, wd) for ws, wd in product(daily_agents['week_start'].unique(), range(7)) if ws + timedelta(days=wd) <= yesterday]
all_combinations = pd.DataFrame(valid_weekdays, columns=['week_start', 'weekday'])
# Merge with daily_agents to fill missing days with zero
daily_agents = all_combinations.merge(daily_agents, on=['week_start', 'weekday'], how='left').fillna(0)
# Compute average unique agents per week
weekly_avg_agents = daily_agents.groupby('week_start')['from'].mean().reset_index()
weekly_avg_agents.rename(columns={'from': 'avg_daily_active_agents'}, inplace=True)
# Prepare data for plotting
weeks = weekly_avg_agents['week_start'].unique()
avg_agents_per_week = weekly_avg_agents['avg_daily_active_agents']
# Create the bar chart
fig = go.Figure()
fig.add_trace(go.Bar(
x=[f'{week.strftime("%b %d")}' for week in weeks],
y=avg_agents_per_week,
marker_color='blue',
opacity=0.7,
text=None,
hoverlabel=dict(
font_size=12,
),
))
# Update layout
fig.update_layout(
title='Daily Active Agents: Weekly Average Number of Agents with at Least 1 Transaction Daily',
xaxis_title='Week',
yaxis_title='Average Number of Active Agents',
xaxis=dict(
tickangle=-45 # Rotate x-axis labels to 45 degrees
),
height=600,
width=1000,
bargap=0,
bargroupgap=0.2,
template='plotly_white'
)
return fig
# Gradio interface
def dashboard():
with gr.Blocks() as demo:
gr.Markdown("# Valory Transactions Dashboard")
# Fetch and display visualizations
with gr.Tab("Transactions"):
fig_tx_chain = create_transcation_visualizations()
gr.Plot(fig_tx_chain)
with gr.Tab("DAA"):
fig_active_agents = create_active_agents_visualizations()
gr.Plot(fig_active_agents)
# Add more tabs as needed...
return demo
# Launch the dashboard
if __name__ == "__main__":
dashboard().launch()