Spaces:
Building
Building
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.dates as mdates | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from plotly.subplots import make_subplots | |
import random | |
from datetime import datetime, timedelta | |
import requests | |
import sys | |
import json | |
from typing import List, Dict, Any | |
import logging | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
logger = logging.getLogger(__name__) | |
# Global variable to store the data for reuse | |
global_df = None | |
# Configuration | |
API_BASE_URL = "https://afmdb.autonolas.tech" | |
def get_agent_type_by_name(type_name: str) -> Dict[str, Any]: | |
"""Get agent type by name""" | |
response = requests.get(f"{API_BASE_URL}/api/agent-types/name/{type_name}") | |
if response.status_code == 404: | |
logger.error(f"Agent type '{type_name}' not found") | |
return None | |
response.raise_for_status() | |
return response.json() | |
def get_attribute_definition_by_name(attr_name: str) -> Dict[str, Any]: | |
"""Get attribute definition by name""" | |
response = requests.get(f"{API_BASE_URL}/api/attributes/name/{attr_name}") | |
if response.status_code == 404: | |
logger.error(f"Attribute definition '{attr_name}' not found") | |
return None | |
response.raise_for_status() | |
return response.json() | |
def get_agents_by_type(type_id: int) -> List[Dict[str, Any]]: | |
"""Get all agents of a specific type""" | |
response = requests.get(f"{API_BASE_URL}/api/agent-types/{type_id}/agents/") | |
if response.status_code == 404: | |
logger.error(f"No agents found for type ID {type_id}") | |
return [] | |
response.raise_for_status() | |
return response.json() | |
def get_attribute_values_by_type_and_attr(agents: List[Dict[str, Any]], attr_def_id: int) -> List[Dict[str, Any]]: | |
"""Get all attribute values for a specific attribute definition across all agents of a given list""" | |
all_attributes = [] | |
# For each agent, get their attributes and filter for the one we want | |
for agent in agents: | |
agent_id = agent["agent_id"] | |
# Call the /api/agents/{agent_id}/attributes/ endpoint | |
response = requests.get(f"{API_BASE_URL}/api/agents/{agent_id}/attributes/", params={"limit": 1000}) | |
if response.status_code == 404: | |
logger.error(f"No attributes found for agent ID {agent_id}") | |
continue | |
try: | |
response.raise_for_status() | |
agent_attrs = response.json() | |
# Filter for the specific attribute definition ID | |
filtered_attrs = [attr for attr in agent_attrs if attr.get("attr_def_id") == attr_def_id] | |
all_attributes.extend(filtered_attrs) | |
except requests.exceptions.RequestException as e: | |
logger.error(f"Error fetching attributes for agent ID {agent_id}: {e}") | |
return all_attributes | |
def get_agent_name(agent_id: int, agents: List[Dict[str, Any]]) -> str: | |
"""Get agent name from agent ID""" | |
for agent in agents: | |
if agent["agent_id"] == agent_id: | |
return agent["agent_name"] | |
return "Unknown" | |
def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]: | |
"""Extract APR value and timestamp from JSON value""" | |
try: | |
# The APR value is stored in the json_value field | |
if attr["json_value"] is None: | |
return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False} | |
# If json_value is a string, parse it | |
if isinstance(attr["json_value"], str): | |
json_data = json.loads(attr["json_value"]) | |
else: | |
json_data = attr["json_value"] | |
apr = json_data.get("apr") | |
timestamp = json_data.get("timestamp") | |
# Convert timestamp to datetime if it exists | |
timestamp_dt = None | |
if timestamp: | |
timestamp_dt = datetime.fromtimestamp(timestamp) | |
return {"apr": apr, "timestamp": timestamp_dt, "agent_id": attr["agent_id"], "is_dummy": False} | |
except (json.JSONDecodeError, KeyError, TypeError) as e: | |
logger.error(f"Error parsing JSON value: {e} for agent_id: {attr.get('agent_id')}") | |
return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False} | |
def fetch_apr_data_from_db(): | |
""" | |
Fetch APR data from database using the API. | |
""" | |
global global_df | |
try: | |
# Step 1: Find the Modius agent type | |
modius_type = get_agent_type_by_name("Modius") | |
if not modius_type: | |
logger.error("Modius agent type not found, using placeholder data") | |
global_df = pd.DataFrame([]) | |
return global_df | |
type_id = modius_type["type_id"] | |
# Step 2: Find the APR attribute definition | |
apr_attr_def = get_attribute_definition_by_name("APR") | |
if not apr_attr_def: | |
logger.error("APR attribute definition not found, using placeholder data") | |
global_df = pd.DataFrame([]) | |
return global_df | |
attr_def_id = apr_attr_def["attr_def_id"] | |
# Step 3: Get all agents of type Modius | |
modius_agents = get_agents_by_type(type_id) | |
if not modius_agents: | |
logger.error("No agents of type 'Modius' found") | |
global_df = pd.DataFrame([]) | |
return global_df | |
# Step 4: Fetch all APR values for Modius agents | |
apr_attributes = get_attribute_values_by_type_and_attr(modius_agents, attr_def_id) | |
if not apr_attributes: | |
logger.error("No APR values found for 'Modius' agents") | |
global_df = pd.DataFrame([]) | |
return global_df | |
# Step 5: Extract APR data | |
apr_data_list = [] | |
for attr in apr_attributes: | |
apr_data = extract_apr_value(attr) | |
if apr_data["apr"] is not None and apr_data["timestamp"] is not None: | |
# Get agent name | |
agent_name = get_agent_name(attr["agent_id"], modius_agents) | |
# Add agent name to the data | |
apr_data["agent_name"] = agent_name | |
# Add is_dummy flag (all real data) | |
apr_data["is_dummy"] = False | |
# Mark negative values as "Performance" metrics | |
if apr_data["apr"] < 0: | |
apr_data["metric_type"] = "Performance" | |
else: | |
apr_data["metric_type"] = "APR" | |
apr_data_list.append(apr_data) | |
# Convert list of dictionaries to DataFrame | |
if not apr_data_list: | |
logger.error("No valid APR data extracted") | |
global_df = pd.DataFrame([]) | |
return global_df | |
global_df = pd.DataFrame(apr_data_list) | |
return global_df | |
except requests.exceptions.RequestException as e: | |
logger.error(f"API request error: {e}") | |
global_df = pd.DataFrame([]) | |
return global_df | |
except Exception as e: | |
logger.error(f"Error fetching APR data: {e}") | |
global_df = pd.DataFrame([]) | |
return global_df | |
def generate_apr_visualizations(): | |
"""Generate APR visualizations with real data only (no dummy data)""" | |
global global_df | |
# Fetch data from database | |
df = fetch_apr_data_from_db() | |
# If we got no data at all, return placeholder figures | |
if df.empty: | |
logger.info("No APR data available. Using fallback visualization.") | |
# Create empty visualizations with a message using Plotly | |
fig = go.Figure() | |
fig.add_annotation( | |
x=0.5, y=0.5, | |
text="No APR data available", | |
font=dict(size=20), | |
showarrow=False | |
) | |
fig.update_layout( | |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False) | |
) | |
# Save as static files for reference | |
fig.write_html("modius_apr_per_agent_graph.html") | |
fig.write_image("modius_apr_per_agent_graph.png") | |
fig.write_html("modius_apr_combined_graph.html") | |
fig.write_image("modius_apr_combined_graph.png") | |
csv_file = None | |
return fig, fig, csv_file | |
# No longer generating dummy data | |
# Set global_df for access by other functions | |
global_df = df | |
# Save to CSV before creating visualizations | |
csv_file = save_to_csv(df) | |
# Create per-agent time series graph (returns figure object) | |
per_agent_fig = create_time_series_graph_per_agent(df) | |
# Create combined time series graph (returns figure object) | |
combined_fig = create_combined_time_series_graph(df) | |
return per_agent_fig, combined_fig, csv_file | |
def create_time_series_graph_per_agent(df): | |
"""Create a time series graph for each agent using Plotly""" | |
# Get unique agents | |
unique_agents = df['agent_id'].unique() | |
if len(unique_agents) == 0: | |
logger.error("No agent data to plot") | |
fig = go.Figure() | |
fig.add_annotation( | |
text="No agent data available", | |
x=0.5, y=0.5, | |
showarrow=False, font=dict(size=20) | |
) | |
return fig | |
# Create a subplot figure for each agent | |
fig = make_subplots(rows=len(unique_agents), cols=1, | |
subplot_titles=[f"Agent: {df[df['agent_id'] == agent_id]['agent_name'].iloc[0]}" | |
for agent_id in unique_agents], | |
vertical_spacing=0.1) | |
# Plot data for each agent | |
for i, agent_id in enumerate(unique_agents): | |
agent_data = df[df['agent_id'] == agent_id].copy() | |
agent_name = agent_data['agent_name'].iloc[0] | |
row = i + 1 | |
# Add zero line to separate APR and Performance | |
fig.add_shape( | |
type="line", line=dict(dash="solid", width=1.5, color="black"), | |
y0=0, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(), | |
row=row, col=1 | |
) | |
# Add background colors | |
fig.add_shape( | |
type="rect", fillcolor="rgba(230, 243, 255, 0.3)", line=dict(width=0), | |
y0=0, y1=1000, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(), | |
row=row, col=1, layer="below" | |
) | |
fig.add_shape( | |
type="rect", fillcolor="rgba(255, 230, 230, 0.3)", line=dict(width=0), | |
y0=-1000, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(), | |
row=row, col=1, layer="below" | |
) | |
# Create separate dataframes for different data types | |
apr_data = agent_data[agent_data['metric_type'] == 'APR'] | |
perf_data = agent_data[agent_data['metric_type'] == 'Performance'] | |
# Sort all data by timestamp for the line plots | |
combined_agent_data = agent_data.sort_values('timestamp') | |
# Add main line connecting all points | |
fig.add_trace( | |
go.Scatter( | |
x=combined_agent_data['timestamp'], | |
y=combined_agent_data['apr'], | |
mode='lines', | |
line=dict(color='purple', width=2), | |
name=f'{agent_name}', | |
legendgroup=agent_name, | |
showlegend=(i == 0), # Only show in legend once | |
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<extra></extra>' | |
), | |
row=row, col=1 | |
) | |
# Add scatter points for APR values | |
if not apr_data.empty: | |
fig.add_trace( | |
go.Scatter( | |
x=apr_data['timestamp'], | |
y=apr_data['apr'], | |
mode='markers', | |
marker=dict(color='blue', size=10, symbol='circle'), | |
name='APR', | |
legendgroup='APR', | |
showlegend=(i == 0), | |
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<extra></extra>' | |
), | |
row=row, col=1 | |
) | |
# Add scatter points for Performance values | |
if not perf_data.empty: | |
fig.add_trace( | |
go.Scatter( | |
x=perf_data['timestamp'], | |
y=perf_data['apr'], | |
mode='markers', | |
marker=dict(color='red', size=10, symbol='square'), | |
name='Performance', | |
legendgroup='Performance', | |
showlegend=(i == 0), | |
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<extra></extra>' | |
), | |
row=row, col=1 | |
) | |
# Update axes | |
fig.update_xaxes(title_text="Time", row=row, col=1) | |
fig.update_yaxes(title_text="Value", row=row, col=1, gridcolor='rgba(0,0,0,0.1)') | |
# Update layout | |
fig.update_layout( | |
height=400 * len(unique_agents), | |
width=1000, | |
title_text="APR and Performance Values per Agent", | |
template="plotly_white", | |
legend=dict( | |
orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1 | |
), | |
margin=dict(r=20, l=20, t=30, b=20), | |
hovermode="closest" | |
) | |
# Save the figure (still useful for reference) | |
graph_file = "modius_apr_per_agent_graph.html" | |
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False) | |
# Also save as image for compatibility | |
img_file = "modius_apr_per_agent_graph.png" | |
fig.write_image(img_file) | |
logger.info(f"Per-agent graph saved to {graph_file} and {img_file}") | |
# Return the figure object for direct use in Gradio | |
return fig | |
def create_combined_time_series_graph(df): | |
"""Create a combined time series graph for all agents using Plotly""" | |
if len(df) == 0: | |
logger.error("No data to plot combined graph") | |
fig = go.Figure() | |
fig.add_annotation( | |
text="No data available", | |
x=0.5, y=0.5, | |
showarrow=False, font=dict(size=20) | |
) | |
return fig | |
# Create Plotly figure | |
fig = go.Figure() | |
# Get unique agents | |
unique_agents = df['agent_id'].unique() | |
# Define a color scale for different agents | |
colors = px.colors.qualitative.Plotly[:len(unique_agents)] | |
# Add background shapes for APR and Performance regions | |
min_time = df['timestamp'].min() | |
max_time = df['timestamp'].max() | |
# Add shape for APR region (above zero) | |
fig.add_shape( | |
type="rect", | |
fillcolor="rgba(230, 243, 255, 0.3)", | |
line=dict(width=0), | |
y0=0, y1=1000, | |
x0=min_time, x1=max_time, | |
layer="below" | |
) | |
# Add shape for Performance region (below zero) | |
fig.add_shape( | |
type="rect", | |
fillcolor="rgba(255, 230, 230, 0.3)", | |
line=dict(width=0), | |
y0=-1000, y1=0, | |
x0=min_time, x1=max_time, | |
layer="below" | |
) | |
# Add zero line | |
fig.add_shape( | |
type="line", | |
line=dict(dash="solid", width=1.5, color="black"), | |
y0=0, y1=0, | |
x0=min_time, x1=max_time | |
) | |
# Add data for each agent | |
for i, agent_id in enumerate(unique_agents): | |
agent_data = df[df['agent_id'] == agent_id].copy() | |
agent_name = agent_data['agent_name'].iloc[0] | |
color = colors[i % len(colors)] | |
# Sort the data by timestamp | |
agent_data = agent_data.sort_values('timestamp') | |
# Add the combined line for both APR and Performance | |
fig.add_trace( | |
go.Scatter( | |
x=agent_data['timestamp'], | |
y=agent_data['apr'], | |
mode='lines', | |
line=dict(color=color, width=2), | |
name=f'{agent_name}', | |
legendgroup=agent_name, | |
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>' | |
) | |
) | |
# Add scatter points for APR values | |
apr_data = agent_data[agent_data['metric_type'] == 'APR'] | |
if not apr_data.empty: | |
fig.add_trace( | |
go.Scatter( | |
x=apr_data['timestamp'], | |
y=apr_data['apr'], | |
mode='markers', | |
marker=dict(color=color, symbol='circle', size=8), | |
name=f'{agent_name} APR', | |
legendgroup=agent_name, | |
showlegend=False, | |
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>' | |
) | |
) | |
# Add scatter points for Performance values | |
perf_data = agent_data[agent_data['metric_type'] == 'Performance'] | |
if not perf_data.empty: | |
fig.add_trace( | |
go.Scatter( | |
x=perf_data['timestamp'], | |
y=perf_data['apr'], | |
mode='markers', | |
marker=dict(color=color, symbol='square', size=8), | |
name=f'{agent_name} Perf', | |
legendgroup=agent_name, | |
showlegend=False, | |
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>' | |
) | |
) | |
# Update layout | |
fig.update_layout( | |
title="APR and Performance Values for All Agents", | |
xaxis_title="Time", | |
yaxis_title="Value", | |
template="plotly_white", | |
height=600, | |
width=1000, | |
legend=dict( | |
orientation="h", | |
yanchor="bottom", | |
y=1.02, | |
xanchor="right", | |
x=1, | |
groupclick="toggleitem" | |
), | |
margin=dict(r=20, l=20, t=30, b=20), | |
hovermode="closest" | |
) | |
# Update axes | |
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)') | |
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)') | |
# Save the figure (still useful for reference) | |
graph_file = "modius_apr_combined_graph.html" | |
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False) | |
# Also save as image for compatibility | |
img_file = "modius_apr_combined_graph.png" | |
fig.write_image(img_file) | |
logger.info(f"Combined graph saved to {graph_file} and {img_file}") | |
# Return the figure object for direct use in Gradio | |
return fig | |
def save_to_csv(df): | |
"""Save the APR data DataFrame to a CSV file and return the file path""" | |
if df.empty: | |
logger.error("No APR data to save to CSV") | |
return None | |
# Define the CSV file path | |
csv_file = "modius_apr_values.csv" | |
# Save to CSV | |
df.to_csv(csv_file, index=False) | |
logger.info(f"APR data saved to {csv_file}") | |
# Also generate a statistics CSV file | |
stats_df = generate_statistics_from_data(df) | |
stats_csv = "modius_apr_statistics.csv" | |
stats_df.to_csv(stats_csv, index=False) | |
logger.info(f"Statistics saved to {stats_csv}") | |
return csv_file | |
def generate_statistics_from_data(df): | |
"""Generate statistics from the APR data""" | |
if df.empty: | |
return pd.DataFrame() | |
# Get unique agents | |
unique_agents = df['agent_id'].unique() | |
stats_list = [] | |
# Generate per-agent statistics | |
for agent_id in unique_agents: | |
agent_data = df[df['agent_id'] == agent_id] | |
agent_name = agent_data['agent_name'].iloc[0] | |
# APR statistics | |
apr_data = agent_data[agent_data['metric_type'] == 'APR'] | |
real_apr = apr_data[apr_data['is_dummy'] == False] | |
# Performance statistics | |
perf_data = agent_data[agent_data['metric_type'] == 'Performance'] | |
real_perf = perf_data[perf_data['is_dummy'] == False] | |
stats = { | |
'agent_id': agent_id, | |
'agent_name': agent_name, | |
'total_points': len(agent_data), | |
'apr_points': len(apr_data), | |
'performance_points': len(perf_data), | |
'real_apr_points': len(real_apr), | |
'real_performance_points': len(real_perf), | |
'avg_apr': apr_data['apr'].mean() if not apr_data.empty else None, | |
'avg_performance': perf_data['apr'].mean() if not perf_data.empty else None, | |
'max_apr': apr_data['apr'].max() if not apr_data.empty else None, | |
'min_apr': apr_data['apr'].min() if not apr_data.empty else None, | |
'latest_timestamp': agent_data['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not agent_data.empty else None | |
} | |
stats_list.append(stats) | |
# Generate overall statistics | |
apr_only = df[df['metric_type'] == 'APR'] | |
perf_only = df[df['metric_type'] == 'Performance'] | |
overall_stats = { | |
'agent_id': 'ALL', | |
'agent_name': 'All Agents', | |
'total_points': len(df), | |
'apr_points': len(apr_only), | |
'performance_points': len(perf_only), | |
'real_apr_points': len(apr_only[apr_only['is_dummy'] == False]), | |
'real_performance_points': len(perf_only[perf_only['is_dummy'] == False]), | |
'avg_apr': apr_only['apr'].mean() if not apr_only.empty else None, | |
'avg_performance': perf_only['apr'].mean() if not perf_only.empty else None, | |
'max_apr': apr_only['apr'].max() if not apr_only.empty else None, | |
'min_apr': apr_only['apr'].min() if not apr_only.empty else None, | |
'latest_timestamp': df['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not df.empty else None | |
} | |
stats_list.append(overall_stats) | |
return pd.DataFrame(stats_list) |