optimus-live-dashboard / apr_visualization.py
gauravlochab
feat: implement logging for error handling in APR data processing
cb9360a
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import random
from datetime import datetime, timedelta
import requests
import sys
import json
from typing import List, Dict, Any
import logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Global variable to store the data for reuse
global_df = None
# Configuration
API_BASE_URL = "https://afmdb.autonolas.tech"
def get_agent_type_by_name(type_name: str) -> Dict[str, Any]:
"""Get agent type by name"""
response = requests.get(f"{API_BASE_URL}/api/agent-types/name/{type_name}")
if response.status_code == 404:
logger.error(f"Agent type '{type_name}' not found")
return None
response.raise_for_status()
return response.json()
def get_attribute_definition_by_name(attr_name: str) -> Dict[str, Any]:
"""Get attribute definition by name"""
response = requests.get(f"{API_BASE_URL}/api/attributes/name/{attr_name}")
if response.status_code == 404:
logger.error(f"Attribute definition '{attr_name}' not found")
return None
response.raise_for_status()
return response.json()
def get_agents_by_type(type_id: int) -> List[Dict[str, Any]]:
"""Get all agents of a specific type"""
response = requests.get(f"{API_BASE_URL}/api/agent-types/{type_id}/agents/")
if response.status_code == 404:
logger.error(f"No agents found for type ID {type_id}")
return []
response.raise_for_status()
return response.json()
def get_attribute_values_by_type_and_attr(agents: List[Dict[str, Any]], attr_def_id: int) -> List[Dict[str, Any]]:
"""Get all attribute values for a specific attribute definition across all agents of a given list"""
all_attributes = []
# For each agent, get their attributes and filter for the one we want
for agent in agents:
agent_id = agent["agent_id"]
# Call the /api/agents/{agent_id}/attributes/ endpoint
response = requests.get(f"{API_BASE_URL}/api/agents/{agent_id}/attributes/", params={"limit": 1000})
if response.status_code == 404:
logger.error(f"No attributes found for agent ID {agent_id}")
continue
try:
response.raise_for_status()
agent_attrs = response.json()
# Filter for the specific attribute definition ID
filtered_attrs = [attr for attr in agent_attrs if attr.get("attr_def_id") == attr_def_id]
all_attributes.extend(filtered_attrs)
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching attributes for agent ID {agent_id}: {e}")
return all_attributes
def get_agent_name(agent_id: int, agents: List[Dict[str, Any]]) -> str:
"""Get agent name from agent ID"""
for agent in agents:
if agent["agent_id"] == agent_id:
return agent["agent_name"]
return "Unknown"
def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
"""Extract APR value and timestamp from JSON value"""
try:
# The APR value is stored in the json_value field
if attr["json_value"] is None:
return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False}
# If json_value is a string, parse it
if isinstance(attr["json_value"], str):
json_data = json.loads(attr["json_value"])
else:
json_data = attr["json_value"]
apr = json_data.get("apr")
timestamp = json_data.get("timestamp")
# Convert timestamp to datetime if it exists
timestamp_dt = None
if timestamp:
timestamp_dt = datetime.fromtimestamp(timestamp)
return {"apr": apr, "timestamp": timestamp_dt, "agent_id": attr["agent_id"], "is_dummy": False}
except (json.JSONDecodeError, KeyError, TypeError) as e:
logger.error(f"Error parsing JSON value: {e} for agent_id: {attr.get('agent_id')}")
return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False}
def fetch_apr_data_from_db():
"""
Fetch APR data from database using the API.
"""
global global_df
try:
# Step 1: Find the Modius agent type
modius_type = get_agent_type_by_name("Modius")
if not modius_type:
logger.error("Modius agent type not found, using placeholder data")
global_df = pd.DataFrame([])
return global_df
type_id = modius_type["type_id"]
# Step 2: Find the APR attribute definition
apr_attr_def = get_attribute_definition_by_name("APR")
if not apr_attr_def:
logger.error("APR attribute definition not found, using placeholder data")
global_df = pd.DataFrame([])
return global_df
attr_def_id = apr_attr_def["attr_def_id"]
# Step 3: Get all agents of type Modius
modius_agents = get_agents_by_type(type_id)
if not modius_agents:
logger.error("No agents of type 'Modius' found")
global_df = pd.DataFrame([])
return global_df
# Step 4: Fetch all APR values for Modius agents
apr_attributes = get_attribute_values_by_type_and_attr(modius_agents, attr_def_id)
if not apr_attributes:
logger.error("No APR values found for 'Modius' agents")
global_df = pd.DataFrame([])
return global_df
# Step 5: Extract APR data
apr_data_list = []
for attr in apr_attributes:
apr_data = extract_apr_value(attr)
if apr_data["apr"] is not None and apr_data["timestamp"] is not None:
# Get agent name
agent_name = get_agent_name(attr["agent_id"], modius_agents)
# Add agent name to the data
apr_data["agent_name"] = agent_name
# Add is_dummy flag (all real data)
apr_data["is_dummy"] = False
# Mark negative values as "Performance" metrics
if apr_data["apr"] < 0:
apr_data["metric_type"] = "Performance"
else:
apr_data["metric_type"] = "APR"
apr_data_list.append(apr_data)
# Convert list of dictionaries to DataFrame
if not apr_data_list:
logger.error("No valid APR data extracted")
global_df = pd.DataFrame([])
return global_df
global_df = pd.DataFrame(apr_data_list)
return global_df
except requests.exceptions.RequestException as e:
logger.error(f"API request error: {e}")
global_df = pd.DataFrame([])
return global_df
except Exception as e:
logger.error(f"Error fetching APR data: {e}")
global_df = pd.DataFrame([])
return global_df
def generate_apr_visualizations():
"""Generate APR visualizations with real data only (no dummy data)"""
global global_df
# Fetch data from database
df = fetch_apr_data_from_db()
# If we got no data at all, return placeholder figures
if df.empty:
logger.info("No APR data available. Using fallback visualization.")
# Create empty visualizations with a message using Plotly
fig = go.Figure()
fig.add_annotation(
x=0.5, y=0.5,
text="No APR data available",
font=dict(size=20),
showarrow=False
)
fig.update_layout(
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
)
# Save as static files for reference
fig.write_html("modius_apr_per_agent_graph.html")
fig.write_image("modius_apr_per_agent_graph.png")
fig.write_html("modius_apr_combined_graph.html")
fig.write_image("modius_apr_combined_graph.png")
csv_file = None
return fig, fig, csv_file
# No longer generating dummy data
# Set global_df for access by other functions
global_df = df
# Save to CSV before creating visualizations
csv_file = save_to_csv(df)
# Create per-agent time series graph (returns figure object)
per_agent_fig = create_time_series_graph_per_agent(df)
# Create combined time series graph (returns figure object)
combined_fig = create_combined_time_series_graph(df)
return per_agent_fig, combined_fig, csv_file
def create_time_series_graph_per_agent(df):
"""Create a time series graph for each agent using Plotly"""
# Get unique agents
unique_agents = df['agent_id'].unique()
if len(unique_agents) == 0:
logger.error("No agent data to plot")
fig = go.Figure()
fig.add_annotation(
text="No agent data available",
x=0.5, y=0.5,
showarrow=False, font=dict(size=20)
)
return fig
# Create a subplot figure for each agent
fig = make_subplots(rows=len(unique_agents), cols=1,
subplot_titles=[f"Agent: {df[df['agent_id'] == agent_id]['agent_name'].iloc[0]}"
for agent_id in unique_agents],
vertical_spacing=0.1)
# Plot data for each agent
for i, agent_id in enumerate(unique_agents):
agent_data = df[df['agent_id'] == agent_id].copy()
agent_name = agent_data['agent_name'].iloc[0]
row = i + 1
# Add zero line to separate APR and Performance
fig.add_shape(
type="line", line=dict(dash="solid", width=1.5, color="black"),
y0=0, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
row=row, col=1
)
# Add background colors
fig.add_shape(
type="rect", fillcolor="rgba(230, 243, 255, 0.3)", line=dict(width=0),
y0=0, y1=1000, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
row=row, col=1, layer="below"
)
fig.add_shape(
type="rect", fillcolor="rgba(255, 230, 230, 0.3)", line=dict(width=0),
y0=-1000, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
row=row, col=1, layer="below"
)
# Create separate dataframes for different data types
apr_data = agent_data[agent_data['metric_type'] == 'APR']
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
# Sort all data by timestamp for the line plots
combined_agent_data = agent_data.sort_values('timestamp')
# Add main line connecting all points
fig.add_trace(
go.Scatter(
x=combined_agent_data['timestamp'],
y=combined_agent_data['apr'],
mode='lines',
line=dict(color='purple', width=2),
name=f'{agent_name}',
legendgroup=agent_name,
showlegend=(i == 0), # Only show in legend once
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
),
row=row, col=1
)
# Add scatter points for APR values
if not apr_data.empty:
fig.add_trace(
go.Scatter(
x=apr_data['timestamp'],
y=apr_data['apr'],
mode='markers',
marker=dict(color='blue', size=10, symbol='circle'),
name='APR',
legendgroup='APR',
showlegend=(i == 0),
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<extra></extra>'
),
row=row, col=1
)
# Add scatter points for Performance values
if not perf_data.empty:
fig.add_trace(
go.Scatter(
x=perf_data['timestamp'],
y=perf_data['apr'],
mode='markers',
marker=dict(color='red', size=10, symbol='square'),
name='Performance',
legendgroup='Performance',
showlegend=(i == 0),
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<extra></extra>'
),
row=row, col=1
)
# Update axes
fig.update_xaxes(title_text="Time", row=row, col=1)
fig.update_yaxes(title_text="Value", row=row, col=1, gridcolor='rgba(0,0,0,0.1)')
# Update layout
fig.update_layout(
height=400 * len(unique_agents),
width=1000,
title_text="APR and Performance Values per Agent",
template="plotly_white",
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
),
margin=dict(r=20, l=20, t=30, b=20),
hovermode="closest"
)
# Save the figure (still useful for reference)
graph_file = "modius_apr_per_agent_graph.html"
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
# Also save as image for compatibility
img_file = "modius_apr_per_agent_graph.png"
fig.write_image(img_file)
logger.info(f"Per-agent graph saved to {graph_file} and {img_file}")
# Return the figure object for direct use in Gradio
return fig
def create_combined_time_series_graph(df):
"""Create a combined time series graph for all agents using Plotly"""
if len(df) == 0:
logger.error("No data to plot combined graph")
fig = go.Figure()
fig.add_annotation(
text="No data available",
x=0.5, y=0.5,
showarrow=False, font=dict(size=20)
)
return fig
# Create Plotly figure
fig = go.Figure()
# Get unique agents
unique_agents = df['agent_id'].unique()
# Define a color scale for different agents
colors = px.colors.qualitative.Plotly[:len(unique_agents)]
# Add background shapes for APR and Performance regions
min_time = df['timestamp'].min()
max_time = df['timestamp'].max()
# Add shape for APR region (above zero)
fig.add_shape(
type="rect",
fillcolor="rgba(230, 243, 255, 0.3)",
line=dict(width=0),
y0=0, y1=1000,
x0=min_time, x1=max_time,
layer="below"
)
# Add shape for Performance region (below zero)
fig.add_shape(
type="rect",
fillcolor="rgba(255, 230, 230, 0.3)",
line=dict(width=0),
y0=-1000, y1=0,
x0=min_time, x1=max_time,
layer="below"
)
# Add zero line
fig.add_shape(
type="line",
line=dict(dash="solid", width=1.5, color="black"),
y0=0, y1=0,
x0=min_time, x1=max_time
)
# Add data for each agent
for i, agent_id in enumerate(unique_agents):
agent_data = df[df['agent_id'] == agent_id].copy()
agent_name = agent_data['agent_name'].iloc[0]
color = colors[i % len(colors)]
# Sort the data by timestamp
agent_data = agent_data.sort_values('timestamp')
# Add the combined line for both APR and Performance
fig.add_trace(
go.Scatter(
x=agent_data['timestamp'],
y=agent_data['apr'],
mode='lines',
line=dict(color=color, width=2),
name=f'{agent_name}',
legendgroup=agent_name,
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
)
)
# Add scatter points for APR values
apr_data = agent_data[agent_data['metric_type'] == 'APR']
if not apr_data.empty:
fig.add_trace(
go.Scatter(
x=apr_data['timestamp'],
y=apr_data['apr'],
mode='markers',
marker=dict(color=color, symbol='circle', size=8),
name=f'{agent_name} APR',
legendgroup=agent_name,
showlegend=False,
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
)
)
# Add scatter points for Performance values
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
if not perf_data.empty:
fig.add_trace(
go.Scatter(
x=perf_data['timestamp'],
y=perf_data['apr'],
mode='markers',
marker=dict(color=color, symbol='square', size=8),
name=f'{agent_name} Perf',
legendgroup=agent_name,
showlegend=False,
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
)
)
# Update layout
fig.update_layout(
title="APR and Performance Values for All Agents",
xaxis_title="Time",
yaxis_title="Value",
template="plotly_white",
height=600,
width=1000,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
groupclick="toggleitem"
),
margin=dict(r=20, l=20, t=30, b=20),
hovermode="closest"
)
# Update axes
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)')
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)')
# Save the figure (still useful for reference)
graph_file = "modius_apr_combined_graph.html"
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
# Also save as image for compatibility
img_file = "modius_apr_combined_graph.png"
fig.write_image(img_file)
logger.info(f"Combined graph saved to {graph_file} and {img_file}")
# Return the figure object for direct use in Gradio
return fig
def save_to_csv(df):
"""Save the APR data DataFrame to a CSV file and return the file path"""
if df.empty:
logger.error("No APR data to save to CSV")
return None
# Define the CSV file path
csv_file = "modius_apr_values.csv"
# Save to CSV
df.to_csv(csv_file, index=False)
logger.info(f"APR data saved to {csv_file}")
# Also generate a statistics CSV file
stats_df = generate_statistics_from_data(df)
stats_csv = "modius_apr_statistics.csv"
stats_df.to_csv(stats_csv, index=False)
logger.info(f"Statistics saved to {stats_csv}")
return csv_file
def generate_statistics_from_data(df):
"""Generate statistics from the APR data"""
if df.empty:
return pd.DataFrame()
# Get unique agents
unique_agents = df['agent_id'].unique()
stats_list = []
# Generate per-agent statistics
for agent_id in unique_agents:
agent_data = df[df['agent_id'] == agent_id]
agent_name = agent_data['agent_name'].iloc[0]
# APR statistics
apr_data = agent_data[agent_data['metric_type'] == 'APR']
real_apr = apr_data[apr_data['is_dummy'] == False]
# Performance statistics
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
real_perf = perf_data[perf_data['is_dummy'] == False]
stats = {
'agent_id': agent_id,
'agent_name': agent_name,
'total_points': len(agent_data),
'apr_points': len(apr_data),
'performance_points': len(perf_data),
'real_apr_points': len(real_apr),
'real_performance_points': len(real_perf),
'avg_apr': apr_data['apr'].mean() if not apr_data.empty else None,
'avg_performance': perf_data['apr'].mean() if not perf_data.empty else None,
'max_apr': apr_data['apr'].max() if not apr_data.empty else None,
'min_apr': apr_data['apr'].min() if not apr_data.empty else None,
'latest_timestamp': agent_data['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not agent_data.empty else None
}
stats_list.append(stats)
# Generate overall statistics
apr_only = df[df['metric_type'] == 'APR']
perf_only = df[df['metric_type'] == 'Performance']
overall_stats = {
'agent_id': 'ALL',
'agent_name': 'All Agents',
'total_points': len(df),
'apr_points': len(apr_only),
'performance_points': len(perf_only),
'real_apr_points': len(apr_only[apr_only['is_dummy'] == False]),
'real_performance_points': len(perf_only[perf_only['is_dummy'] == False]),
'avg_apr': apr_only['apr'].mean() if not apr_only.empty else None,
'avg_performance': perf_only['apr'].mean() if not perf_only.empty else None,
'max_apr': apr_only['apr'].max() if not apr_only.empty else None,
'min_apr': apr_only['apr'].min() if not apr_only.empty else None,
'latest_timestamp': df['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not df.empty else None
}
stats_list.append(overall_stats)
return pd.DataFrame(stats_list)