|
import numpy as np |
|
import pandas as pd |
|
import gradio as gr |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
labels = ['Not_Adult', 'Adult'] |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
device |
|
|
|
model_name = 'valurank/finetuned-distilbert-adult-content-detection' |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
def get_adult_content(text): |
|
input_tensor = tokenizer.encode(text, return_tensors='pt', truncation=True) |
|
logits = model(input_tensor).logits |
|
|
|
softmax = torch.nn.Softmax(dim=1) |
|
probs = softmax(logits)[0] |
|
probs = probs.cpu().detach().numpy() |
|
|
|
|
|
adult_content = f"{labels[0]} : {round(probs[0]*100,2)} {labels[1]} : {round(probs[1]*100,2)}" |
|
return adult_content |
|
|
|
demo = gr.Interface(get_adult_content, inputs = gr.Textbox(label= "Input your text here"), |
|
outputs = gr.Textbox(label='Category')) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(debug=True) |