abdulmatinomotoso commited on
Commit
4dad73d
·
1 Parent(s): 6f7c5de

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #importing the necessary libraries
2
+
3
+ import pandas as pd
4
+ import numpy as np
5
+ from sentence_transformers import SentenceTransformer
6
+ from keybert import KeyBERT
7
+ from keyphrase_vectorizers import KeyphraseCountVectorizer
8
+
9
+ # Defining a function to read in the text file
10
+
11
+ def read_in_text(url):
12
+ with open(url, 'r') as file:
13
+ article = file.read()
14
+ return article
15
+
16
+ tmp_model = SentenceTransformer('valurank/MiniLM-L6-Keyword-Extraction')
17
+ kw_extractor = KeyBERT(tmp_model)
18
+
19
+ def get_keybert_results_with_vectorizer(file, number_of_results=20):
20
+ try:
21
+ text = read_in_text(file.name)
22
+ keywords = kw_extractor.extract_keywords(text, vectorizer=KeyphraseCountVectorizer(), stop_words=None, top_n=number_of_results)
23
+ keywords = [i for i in keywords if i[1] >= 0.25]
24
+
25
+ keybert_diversity_phrases = []
26
+ for i, j in keywords:
27
+ keybert_diversity_phrases.append(i)
28
+
29
+ output_df = pd.DataFrame()
30
+ output_df['keyword'] = np.array(keybert_diversity_phrases)
31
+ return output_df.head(20)
32
+ except Exception:
33
+ return "Error"
34
+
35
+ demo = gr.Interface(get_keybert_results_with_vectorizer, inputs=gr.inputs.File(),
36
+ outputs=gr.outputs.Dataframe(),
37
+ title = "Keyword Extraction")
38
+
39
+ if __name__ == "__main__":
40
+ demo.launch(debug=True)