Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import re | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
#Defining the models and tokenuzer | |
model_name = "valurank/distilroberta-spam-comments-detection" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
def clean_text(raw_text): | |
text = raw_text.encode("ascii", errors="ignore").decode( | |
"ascii" | |
) # remove non-ascii, Chinese characters | |
text = re.sub(r"\n", " ", text) | |
text = re.sub(r"\n\n", " ", text) | |
text = re.sub(r"\t", " ", text) | |
text = text.strip(" ") | |
text = re.sub( | |
" +", " ", text | |
).strip() # get rid of multiple spaces and replace with a single | |
text = re.sub(r"Date\s\d{1,2}\/\d{1,2}\/\d{4}", "", text) #remove date | |
text = re.sub(r"\d{1,2}:\d{2}\s[A-Z]+\s[A-Z]+", "", text) #remove time | |
return text | |
#Defining a function to get the category of the news article | |
def get_category(text): | |
text = clean_text(text) | |
input_tensor = tokenizer.encode(text, return_tensors="pt", truncation=True) | |
input_tensor = input_tensor.to(device) | |
logits = model(input_tensor).logits | |
softmax = torch.nn.Softmax(dim=1) | |
probs = softmax(logits)[0] | |
p = probs.cpu().detach().numpy() | |
pred = {l: p[int(i)] for i, l in model.config.id2label.items()} | |
category = max(pred, key=lambda k: pred[k]) | |
return category | |
#Creating the interface for the radio app | |
demo = gr.Interface(get_category, inputs=gr.Textbox(label="Drop your comment here"), | |
outputs = "text", | |
title="Spam comments detection") | |
#Launching the gradio app | |
if __name__ == "__main__": | |
demo.launch(debug=True) |