Spaces:
Runtime error
Runtime error
Add application file
Browse files- app.py +76 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer
|
4 |
+
import itertools
|
5 |
+
from nltk.corpus import stopwords
|
6 |
+
import nltk
|
7 |
+
import easyocr
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
nltk.download('stopwords')
|
11 |
+
|
12 |
+
# load the model and tokenizer
|
13 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
14 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda")
|
15 |
+
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
17 |
+
reader = easyocr.Reader(['en'])
|
18 |
+
|
19 |
+
# set up Streamlit app
|
20 |
+
st.set_page_config(layout='wide', page_title='Image Hashtag Recommender')
|
21 |
+
|
22 |
+
def generate_hashtags(image_file):
|
23 |
+
# get image and convert to RGB mode
|
24 |
+
image = Image.open(image_file).convert('RGB')
|
25 |
+
|
26 |
+
# extract image features
|
27 |
+
inputs = processor(image, return_tensors="pt").to("cuda")
|
28 |
+
|
29 |
+
output_ids = model.generate(**inputs)
|
30 |
+
# out_text = processor.decode(out[0], skip_special_tokens=True)
|
31 |
+
|
32 |
+
# decode the model output to text and extract caption words
|
33 |
+
output_text = processor.decode(output_ids[0], skip_special_tokens=True)
|
34 |
+
caption_words = [word.lower() for word in output_text.split() if not word.startswith("#")]
|
35 |
+
|
36 |
+
# remove stop words from caption words
|
37 |
+
stop_words = set(stopwords.words('english'))
|
38 |
+
caption_words = [word for word in caption_words if word not in stop_words]
|
39 |
+
|
40 |
+
# use easyocr to extract text from the image
|
41 |
+
text = reader.readtext(np.array(image))
|
42 |
+
detected_text = " ".join([item[1] for item in text])
|
43 |
+
|
44 |
+
# combine caption words and detected text
|
45 |
+
all_words = caption_words + detected_text.split()
|
46 |
+
|
47 |
+
# generate combinations of words for hashtags
|
48 |
+
hashtags = []
|
49 |
+
for n in range(1, 4):
|
50 |
+
word_combinations = list(itertools.combinations(all_words, n))
|
51 |
+
for combination in word_combinations:
|
52 |
+
hashtag = "#" + "".join(combination)
|
53 |
+
hashtags.append(hashtag)
|
54 |
+
|
55 |
+
# return top 10 hashtags by frequency
|
56 |
+
top_hashtags = [tag for tag in sorted(set(hashtags), key=hashtags.count, reverse=True) if tag != "#"]
|
57 |
+
return [top_hashtags[:10], output_text]
|
58 |
+
|
59 |
+
st.title("Image Caption and HashTag Recommender")
|
60 |
+
|
61 |
+
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
62 |
+
|
63 |
+
# if the user has submitted an image, generate hashtags
|
64 |
+
if image_file is not None:
|
65 |
+
try:
|
66 |
+
hashtags = generate_hashtags(image_file)
|
67 |
+
if len(hashtags) > 0:
|
68 |
+
st.write(f"Caption : {hashtags[1]}")
|
69 |
+
st.write("Top 10 hashtags for this image:")
|
70 |
+
for tag in hashtags[0]:
|
71 |
+
st.write(tag)
|
72 |
+
else:
|
73 |
+
st.write("No hashtags found for this image.")
|
74 |
+
except Exception as e:
|
75 |
+
st.write(f"Error: {e}")
|
76 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
easyocr==1.6.2
|
2 |
+
nltk==3.7
|
3 |
+
numpy==1.23.5
|
4 |
+
Pillow==9.4.0
|
5 |
+
Pillow==9.5.0
|
6 |
+
streamlit==1.21.0
|
7 |
+
torch==2.0.0
|
8 |
+
transformers==4.28.1
|