Spaces:
Runtime error
Runtime error
File size: 6,164 Bytes
ceca68f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import os
import gradio as gr
import pandas as pd
from functools import partial
from ai_classroom_suite.UIBaseComponents import *
### User Interface Chatbot Functions ###
def get_tutor_reply(chat_tutor):
chat_tutor.get_tutor_reply()
return gr.update(value="", interactive=True), chat_tutor.conversation_memory, chat_tutor
def get_conversation_history(chat_tutor):
return chat_tutor.conversation_memory, chat_tutor
### Instructor Interface Helper Functions ###
def get_instructor_prompt(fileobj):
# get file path
file_path = fileobj.name
with open(file_path, "r") as f:
instructor_prompt = f.read()
return instructor_prompt
def embed_prompt(prompt, chat_tutor):
# update secret
os.environ["SECRET_PROMPT"] = prompt
# update tutor
chat_tutor.learning_objectives = prompt
return os.environ.get("SECRET_PROMPT"), chat_tutor
### User Interfaces ###
with gr.Blocks() as demo:
#initialize tutor (with state)
study_tutor = gr.State(SlightlyDelusionalTutor())
# Student interface
with gr.Tab("For Students"):
# Chatbot interface
gr.Markdown("""
## Chat with the Model
Description here
""")
with gr.Row(equal_height=True):
with gr.Column(scale=2):
chatbot = gr.Chatbot()
with gr.Row():
user_chat_input = gr.Textbox(label="User input", scale=9)
user_chat_submit = gr.Button("Ask/answer model", scale=1)
# First add user's message to the conversation history
# Then get reply from the tutor and add that to the conversation history
user_chat_submit.click(
fn = add_user_message, inputs = [user_chat_input, study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=False
).then(
fn = get_tutor_reply, inputs = [study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=True
)
# Testing the chat history storage, can be deleted at deployment
with gr.Blocks():
test_btn = gr.Button("View your chat history")
chat_history = gr.JSON(label = "conversation history")
test_btn.click(get_conversation_history, inputs=[study_tutor], outputs=[chat_history, study_tutor])
# Download conversation history file
with gr.Blocks():
gr.Markdown("""
## Export Your Chat History
Export your chat history as a .json, .txt, or .csv file
""")
with gr.Row():
export_dialogue_button_json = gr.Button("JSON")
export_dialogue_button_txt = gr.Button("TXT")
export_dialogue_button_csv = gr.Button("CSV")
file_download = gr.Files(label="Download here", file_types=['.json', '.txt', '.csv'], type="file", visible=False)
export_dialogue_button_json.click(save_json, study_tutor, file_download, show_progress=True)
export_dialogue_button_txt.click(save_txt, study_tutor, file_download, show_progress=True)
export_dialogue_button_csv.click(save_csv, study_tutor, file_download, show_progress=True)
# Instructor interface
with gr.Tab("Instructor Only"):
"""
API Authentication functionality
Instead of ask students to provide key, the key is now provided by the instructor.
To permanently set the key, go to Settings -> Variables and secrets -> Secrets,
then replace OPENAI_API_KEY value with whatever openai key of the instructor.
"""
api_input = gr.Textbox(show_label=False, type="password", visible=False, value=os.environ.get("OPENAI_API_KEY"))
# Upload secret prompt functionality
# The instructor will provide a secret prompt/persona to the tutor
with gr.Blocks():
# testing purpose, change visible to False at deployment
view_secret = gr.Textbox(label="Current secret prompt", value=os.environ.get("SECRET_PROMPT"), visible=False)
# Prompt instructor to upload the secret file
file_input = gr.File(label="Load a .txt or .py file", file_types=['.py', '.txt'], type="file", elem_classes="short-height")
# Verify prompt content
instructor_prompt = gr.Textbox(label="Verify your prompt content", visible=True)
file_input.upload(fn=get_instructor_prompt, inputs=file_input, outputs=instructor_prompt)
# Placeholders components
text_input_none = gr.Textbox(visible=False)
file_input_none = gr.File(visible=False)
instructor_input_none = gr.TextArea(visible=False)
learning_objectives_none = gr.Textbox(visible=False)
# Set the secret prompt in this session and embed it to the study tutor
prompt_submit_btn = gr.Button("Submit")
prompt_submit_btn.click(
fn=embed_prompt, inputs=[instructor_prompt, study_tutor], outputs=[view_secret, study_tutor]
).then(
fn=create_reference_store,
inputs=[study_tutor, prompt_submit_btn, instructor_prompt, file_input_none, instructor_input_none, api_input, instructor_prompt],
outputs=[study_tutor, prompt_submit_btn]
)
# TODO: The instructor prompt is now only set in session if not go to Settings/secret,
# to "permanently" set the secret prompt not seen by the students who use this space,
# one possible way is to recreate the instructor interface in another space,
# and load it here to chain with the student interface
# TODO: Currently, the instructor prompt is handled as text input and stored in the vector store (and in the learning objective),
# which means the tutor now is still a question-answering tutor who viewed the prompt as context (but not really acting based on it).
# We need to find a way to provide the prompt directly to the model and set its status.
demo.queue().launch(server_name='0.0.0.0', server_port=7860) |