umangchaudhry
commited on
Upload 2 files
Browse files- app.py +251 -23
- batch_summary_generation.py +100 -0
app.py
CHANGED
@@ -1,16 +1,17 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
-
from io import BytesIO
|
4 |
from tempfile import NamedTemporaryFile
|
5 |
from langchain.chains import create_retrieval_chain
|
6 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
7 |
from langchain_core.prompts import ChatPromptTemplate
|
8 |
from langchain_openai import ChatOpenAI
|
9 |
from langchain_community.document_loaders import PyPDFLoader
|
|
|
10 |
from langchain_community.vectorstores import FAISS
|
11 |
from langchain_openai import OpenAIEmbeddings
|
12 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
13 |
import re
|
|
|
14 |
|
15 |
# Function to remove code block markers from the answer
|
16 |
def remove_code_blocks(text):
|
@@ -84,13 +85,13 @@ def process_multi_plan_qa(api_key, input_text, display_placeholder):
|
|
84 |
|
85 |
# Load the existing vector store
|
86 |
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
|
87 |
-
vector_store = FAISS.load_local("
|
88 |
|
89 |
# Convert the vector store to a retriever
|
90 |
-
retriever = vector_store.as_retriever(search_kwargs={"k":
|
91 |
|
92 |
# Read the system prompt for multi-document QA
|
93 |
-
prompt_path = "multi_document_qa_system_prompt.md"
|
94 |
if os.path.exists(prompt_path):
|
95 |
with open(prompt_path, "r") as file:
|
96 |
system_prompt = file.read()
|
@@ -117,12 +118,11 @@ def process_multi_plan_qa(api_key, input_text, display_placeholder):
|
|
117 |
# Display the answer
|
118 |
display_placeholder.markdown(f"**Answer:**\n{answer}")
|
119 |
|
120 |
-
|
121 |
def multi_plan_qa_multi_vectorstore(api_key, input_text, display_placeholder):
|
122 |
os.environ["OPENAI_API_KEY"] = api_key
|
123 |
|
124 |
# Directory containing individual vector stores
|
125 |
-
vectorstore_directory = "
|
126 |
|
127 |
# List all vector store directories
|
128 |
vectorstore_names = [d for d in os.listdir(vectorstore_directory) if os.path.isdir(os.path.join(vectorstore_directory, d))]
|
@@ -139,15 +139,14 @@ def multi_plan_qa_multi_vectorstore(api_key, input_text, display_placeholder):
|
|
139 |
vector_store = FAISS.load_local(vectorstore_path, embeddings, allow_dangerous_deserialization=True)
|
140 |
|
141 |
# Convert the vector store to a retriever
|
142 |
-
retriever = vector_store.as_retriever(search_kwargs={"k":
|
143 |
|
144 |
# Retrieve relevant chunks for the input text
|
145 |
retrieved_chunks = retriever.invoke("input_text")
|
146 |
-
print(retrieved_chunks)
|
147 |
all_retrieved_chunks.extend(retrieved_chunks)
|
148 |
|
149 |
# Read the system prompt for multi-document QA
|
150 |
-
prompt_path = "multi_document_qa_system_prompt.md"
|
151 |
if os.path.exists(prompt_path):
|
152 |
with open(prompt_path, "r") as file:
|
153 |
system_prompt = file.read()
|
@@ -173,23 +172,161 @@ def multi_plan_qa_multi_vectorstore(api_key, input_text, display_placeholder):
|
|
173 |
display_placeholder.markdown(f"**Answer:**\n{result}")
|
174 |
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
# Streamlit app layout with tabs
|
177 |
st.title("Climate Policy Analysis Tool")
|
178 |
|
179 |
# API Key Input
|
180 |
-
api_key = st.text_input("Enter your OpenAI API key:", type="password")
|
181 |
|
182 |
# Create tabs
|
183 |
-
tab1, tab2, tab3 = st.tabs(["Summary Generation", "Multi-Plan QA (Shared Vectorstore)", "Multi-Plan QA (Multi-Vectorstore)"])
|
184 |
|
185 |
# First tab: Summary Generation
|
186 |
with tab1:
|
187 |
-
uploaded_file = st.file_uploader("Upload a Climate Action Plan in PDF format", type="pdf")
|
188 |
|
189 |
-
prompt_file_path = "summary_tool_system_prompt.md"
|
190 |
-
questions_file_path = "summary_tool_questions.md"
|
191 |
|
192 |
-
if st.button("Generate") and api_key and uploaded_file:
|
193 |
display_placeholder = st.empty()
|
194 |
|
195 |
with st.spinner("Processing..."):
|
@@ -200,26 +337,117 @@ with tab1:
|
|
200 |
|
201 |
# Use the uploaded file's name for the download file
|
202 |
base_name = os.path.splitext(uploaded_file.name)[0]
|
203 |
-
download_file_name = f"{base_name}
|
204 |
|
205 |
st.download_button(
|
206 |
label="Download Results as Markdown",
|
207 |
data=markdown_text,
|
208 |
file_name=download_file_name,
|
209 |
-
mime="text/markdown"
|
|
|
210 |
)
|
211 |
except Exception as e:
|
212 |
st.error(f"An error occurred: {e}")
|
213 |
|
214 |
# Second tab: Multi-Plan QA
|
215 |
with tab2:
|
216 |
-
input_text = st.text_input("Ask a question:")
|
217 |
if input_text and api_key:
|
218 |
-
|
219 |
-
process_multi_plan_qa(api_key, input_text,
|
220 |
|
221 |
with tab3:
|
222 |
-
user_input = st.text_input("Ask a Question")
|
223 |
if user_input and api_key:
|
224 |
-
|
225 |
-
multi_plan_qa_multi_vectorstore(api_key, user_input,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
3 |
from tempfile import NamedTemporaryFile
|
4 |
from langchain.chains import create_retrieval_chain
|
5 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
6 |
from langchain_core.prompts import ChatPromptTemplate
|
7 |
from langchain_openai import ChatOpenAI
|
8 |
from langchain_community.document_loaders import PyPDFLoader
|
9 |
+
from langchain_community.document_loaders import TextLoader
|
10 |
from langchain_community.vectorstores import FAISS
|
11 |
from langchain_openai import OpenAIEmbeddings
|
12 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
13 |
import re
|
14 |
+
import anthropic
|
15 |
|
16 |
# Function to remove code block markers from the answer
|
17 |
def remove_code_blocks(text):
|
|
|
85 |
|
86 |
# Load the existing vector store
|
87 |
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
|
88 |
+
vector_store = FAISS.load_local("Combined_Summary_Vectorstore", embeddings, allow_dangerous_deserialization=True)
|
89 |
|
90 |
# Convert the vector store to a retriever
|
91 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 50})
|
92 |
|
93 |
# Read the system prompt for multi-document QA
|
94 |
+
prompt_path = "Prompts/multi_document_qa_system_prompt.md"
|
95 |
if os.path.exists(prompt_path):
|
96 |
with open(prompt_path, "r") as file:
|
97 |
system_prompt = file.read()
|
|
|
118 |
# Display the answer
|
119 |
display_placeholder.markdown(f"**Answer:**\n{answer}")
|
120 |
|
|
|
121 |
def multi_plan_qa_multi_vectorstore(api_key, input_text, display_placeholder):
|
122 |
os.environ["OPENAI_API_KEY"] = api_key
|
123 |
|
124 |
# Directory containing individual vector stores
|
125 |
+
vectorstore_directory = "Individual_Summary_Vectorstores"
|
126 |
|
127 |
# List all vector store directories
|
128 |
vectorstore_names = [d for d in os.listdir(vectorstore_directory) if os.path.isdir(os.path.join(vectorstore_directory, d))]
|
|
|
139 |
vector_store = FAISS.load_local(vectorstore_path, embeddings, allow_dangerous_deserialization=True)
|
140 |
|
141 |
# Convert the vector store to a retriever
|
142 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 2})
|
143 |
|
144 |
# Retrieve relevant chunks for the input text
|
145 |
retrieved_chunks = retriever.invoke("input_text")
|
|
|
146 |
all_retrieved_chunks.extend(retrieved_chunks)
|
147 |
|
148 |
# Read the system prompt for multi-document QA
|
149 |
+
prompt_path = "Prompts/multi_document_qa_system_prompt.md"
|
150 |
if os.path.exists(prompt_path):
|
151 |
with open(prompt_path, "r") as file:
|
152 |
system_prompt = file.read()
|
|
|
172 |
display_placeholder.markdown(f"**Answer:**\n{result}")
|
173 |
|
174 |
|
175 |
+
# Function to compare document via one-to-many query approach
|
176 |
+
def process_one_to_many_query(api_key, focus_input, comparison_inputs, input_text, display_placeholder):
|
177 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
178 |
+
|
179 |
+
def load_documents_from_pdf(file):
|
180 |
+
with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
|
181 |
+
temp_pdf.write(file.read())
|
182 |
+
temp_pdf_path = temp_pdf.name
|
183 |
+
|
184 |
+
loader = PyPDFLoader(temp_pdf_path)
|
185 |
+
docs = loader.load()
|
186 |
+
os.remove(temp_pdf_path)
|
187 |
+
return docs
|
188 |
+
|
189 |
+
def load_vector_store_from_path(path):
|
190 |
+
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
|
191 |
+
return FAISS.load_local(path, embeddings, allow_dangerous_deserialization=True)
|
192 |
+
|
193 |
+
# Load focus documents or vector store
|
194 |
+
if isinstance(focus_input, st.runtime.uploaded_file_manager.UploadedFile):
|
195 |
+
focus_docs = load_documents_from_pdf(focus_input)
|
196 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=500)
|
197 |
+
focus_splits = text_splitter.split_documents(focus_docs)
|
198 |
+
focus_vector_store = FAISS.from_documents(focus_splits, OpenAIEmbeddings(model="text-embedding-3-large"))
|
199 |
+
focus_retriever = focus_vector_store.as_retriever(search_kwargs={"k": 5})
|
200 |
+
elif isinstance(focus_input, str) and os.path.isdir(focus_input):
|
201 |
+
focus_vector_store = load_vector_store_from_path(focus_input)
|
202 |
+
focus_retriever = focus_vector_store.as_retriever(search_kwargs={"k": 5})
|
203 |
+
else:
|
204 |
+
raise ValueError("Invalid focus input type. Must be a PDF file or a path to a vector store.")
|
205 |
+
|
206 |
+
focus_docs = focus_retriever.invoke(input_text)
|
207 |
+
|
208 |
+
comparison_chunks = []
|
209 |
+
for comparison_input in comparison_inputs:
|
210 |
+
if isinstance(comparison_input, st.runtime.uploaded_file_manager.UploadedFile):
|
211 |
+
comparison_docs = load_documents_from_pdf(comparison_input)
|
212 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=500)
|
213 |
+
comparison_splits = text_splitter.split_documents(comparison_docs)
|
214 |
+
comparison_vector_store = FAISS.from_documents(comparison_splits, OpenAIEmbeddings(model="text-embedding-3-large"))
|
215 |
+
comparison_retriever = comparison_vector_store.as_retriever(search_kwargs={"k": 5})
|
216 |
+
elif isinstance(comparison_input, str) and os.path.isdir(comparison_input):
|
217 |
+
comparison_vector_store = load_vector_store_from_path(comparison_input)
|
218 |
+
comparison_retriever = comparison_vector_store.as_retriever(search_kwargs={"k": 5})
|
219 |
+
else:
|
220 |
+
raise ValueError("Invalid comparison input type. Must be a PDF file or a path to a vector store.")
|
221 |
+
|
222 |
+
comparison_docs = comparison_retriever.invoke(input_text)
|
223 |
+
comparison_chunks.extend(comparison_docs)
|
224 |
+
|
225 |
+
# Construct the combined context
|
226 |
+
combined_context = (
|
227 |
+
focus_docs +
|
228 |
+
comparison_chunks
|
229 |
+
)
|
230 |
+
|
231 |
+
# Read the system prompt
|
232 |
+
prompt_path = "Prompts/comparison_prompt.md"
|
233 |
+
if os.path.exists(prompt_path):
|
234 |
+
with open(prompt_path, "r") as file:
|
235 |
+
system_prompt = file.read()
|
236 |
+
else:
|
237 |
+
raise FileNotFoundError(f"The specified file was not found: {prompt_path}")
|
238 |
+
|
239 |
+
# Create the prompt template
|
240 |
+
prompt = ChatPromptTemplate.from_messages(
|
241 |
+
[
|
242 |
+
("system", system_prompt),
|
243 |
+
("human", "{input}")
|
244 |
+
]
|
245 |
+
)
|
246 |
+
|
247 |
+
# Create the question-answering chain
|
248 |
+
llm = ChatOpenAI(model="gpt-4o")
|
249 |
+
question_answer_chain = create_stuff_documents_chain(
|
250 |
+
llm,
|
251 |
+
prompt,
|
252 |
+
document_variable_name="context"
|
253 |
+
)
|
254 |
+
|
255 |
+
# Process the combined context
|
256 |
+
result = question_answer_chain.invoke({
|
257 |
+
"context": combined_context,
|
258 |
+
"input": input_text
|
259 |
+
})
|
260 |
+
|
261 |
+
# Display the answer
|
262 |
+
display_placeholder.markdown(f"**Answer:**\n{result}")
|
263 |
+
|
264 |
+
# Function to list vector store documents
|
265 |
+
def list_vector_store_documents():
|
266 |
+
# Assuming documents are stored in the "Individual_All_Vectorstores" directory
|
267 |
+
directory_path = "Individual_All_Vectorstores"
|
268 |
+
if not os.path.exists(directory_path):
|
269 |
+
raise FileNotFoundError(f"The directory '{directory_path}' does not exist. Run `create_and_save_individual_vector_stores()` to create it.")
|
270 |
+
# List all available vector stores by document name
|
271 |
+
documents = [f.replace("_vectorstore", "").replace("_", " ") for f in os.listdir(directory_path) if f.endswith("_vectorstore")]
|
272 |
+
return documents
|
273 |
+
|
274 |
+
def compare_with_long_context(api_key, anthropic_api_key, input_text, focus_plan_path, focus_city_name, selected_summaries, display_placeholder):
|
275 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
276 |
+
os.environ["ANTHROPIC_API_KEY"] = anthropic_api_key
|
277 |
+
|
278 |
+
# Load the focus plan
|
279 |
+
focus_docs = []
|
280 |
+
if focus_plan_path.endswith('.pdf'):
|
281 |
+
focus_loader = PyPDFLoader(focus_plan_path)
|
282 |
+
focus_docs = focus_loader.load()
|
283 |
+
elif focus_plan_path.endswith('.md'):
|
284 |
+
focus_loader = TextLoader(focus_plan_path)
|
285 |
+
focus_docs = focus_loader.load()
|
286 |
+
else:
|
287 |
+
raise ValueError("Unsupported file format for focus plan.")
|
288 |
+
|
289 |
+
# Concatenate selected summary documents
|
290 |
+
summaries_directory = "CAPS_Summaries"
|
291 |
+
summaries_content = ""
|
292 |
+
for filename in selected_summaries:
|
293 |
+
with open(os.path.join(summaries_directory, filename), 'r') as file:
|
294 |
+
summaries_content += file.read() + "\n\n"
|
295 |
+
|
296 |
+
# Prepare the context
|
297 |
+
focus_context = "\n\n".join([doc.page_content for doc in focus_docs])
|
298 |
+
|
299 |
+
# Create the client and message
|
300 |
+
client = anthropic.Anthropic(api_key=anthropic_api_key)
|
301 |
+
message = client.messages.create(
|
302 |
+
model="claude-3-5-sonnet-20241022",
|
303 |
+
max_tokens=1024,
|
304 |
+
messages=[
|
305 |
+
{"role": "user", "content": f"{input_text}\n\nFocus Document:\n{focus_context}\n\nSummaries:\n{summaries_content}"}
|
306 |
+
]
|
307 |
+
)
|
308 |
+
|
309 |
+
# Display the answer
|
310 |
+
display_placeholder.markdown(f"**Answer:**\n{message.content}", unsafe_allow_html=True)
|
311 |
+
|
312 |
+
|
313 |
# Streamlit app layout with tabs
|
314 |
st.title("Climate Policy Analysis Tool")
|
315 |
|
316 |
# API Key Input
|
317 |
+
api_key = st.text_input("Enter your OpenAI API key:", type="password", key="openai_key")
|
318 |
|
319 |
# Create tabs
|
320 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Summary Generation", "Multi-Plan QA (Shared Vectorstore)", "Multi-Plan QA (Multi-Vectorstore)", "Plan Comparison Tool", "Plan Comparison with Long Context Model"])
|
321 |
|
322 |
# First tab: Summary Generation
|
323 |
with tab1:
|
324 |
+
uploaded_file = st.file_uploader("Upload a Climate Action Plan in PDF format", type="pdf", key="upload_file")
|
325 |
|
326 |
+
prompt_file_path = "Prompts/summary_tool_system_prompt.md"
|
327 |
+
questions_file_path = "Prompts/summary_tool_questions.md"
|
328 |
|
329 |
+
if st.button("Generate", key="generate_button") and api_key and uploaded_file:
|
330 |
display_placeholder = st.empty()
|
331 |
|
332 |
with st.spinner("Processing..."):
|
|
|
337 |
|
338 |
# Use the uploaded file's name for the download file
|
339 |
base_name = os.path.splitext(uploaded_file.name)[0]
|
340 |
+
download_file_name = f"{base_name}_Summary.md"
|
341 |
|
342 |
st.download_button(
|
343 |
label="Download Results as Markdown",
|
344 |
data=markdown_text,
|
345 |
file_name=download_file_name,
|
346 |
+
mime="text/markdown",
|
347 |
+
key="download_button"
|
348 |
)
|
349 |
except Exception as e:
|
350 |
st.error(f"An error occurred: {e}")
|
351 |
|
352 |
# Second tab: Multi-Plan QA
|
353 |
with tab2:
|
354 |
+
input_text = st.text_input("Ask a question:", key="multi_plan_input")
|
355 |
if input_text and api_key:
|
356 |
+
display_placeholder2 = st.empty()
|
357 |
+
process_multi_plan_qa(api_key, input_text, display_placeholder2)
|
358 |
|
359 |
with tab3:
|
360 |
+
user_input = st.text_input("Ask a Question", key="multi_vectorstore_input")
|
361 |
if user_input and api_key:
|
362 |
+
display_placeholder3 = st.empty()
|
363 |
+
multi_plan_qa_multi_vectorstore(api_key, user_input, display_placeholder3)
|
364 |
+
|
365 |
+
# Fourth tab: Plan Comparison Tool
|
366 |
+
with tab4:
|
367 |
+
st.header("Plan Comparison Tool")
|
368 |
+
|
369 |
+
# List of documents from vector stores
|
370 |
+
vectorstore_documents = list_vector_store_documents()
|
371 |
+
|
372 |
+
# Option to upload a new plan or select from existing vector stores
|
373 |
+
focus_option = st.radio("Choose a focus plan:", ("Select from existing vector stores", "Upload a new plan"), key="focus_option")
|
374 |
+
|
375 |
+
if focus_option == "Upload a new plan":
|
376 |
+
focus_uploaded_file = st.file_uploader("Upload a Climate Action Plan to compare", type="pdf", key="focus_upload")
|
377 |
+
focus_city_name = st.text_input("Enter the city name for the uploaded plan:", key="focus_city_name")
|
378 |
+
if focus_uploaded_file is not None and focus_city_name:
|
379 |
+
# Directly use the uploaded file
|
380 |
+
focus_input = focus_uploaded_file
|
381 |
+
else:
|
382 |
+
focus_input = None
|
383 |
+
else:
|
384 |
+
# Select a focus plan from existing vector stores
|
385 |
+
selected_focus_plan = st.selectbox("Select a focus plan:", vectorstore_documents, key="select_focus_plan")
|
386 |
+
focus_input = os.path.join("Individual_All_Vectorstores", f"{selected_focus_plan}_vectorstore")
|
387 |
+
focus_city_name = selected_focus_plan.replace("_", " ")
|
388 |
+
|
389 |
+
# Option to upload comparison documents or select from existing vector stores
|
390 |
+
comparison_option = st.radio("Choose comparison documents:", ("Select from existing vector stores", "Upload new documents"), key="comparison_option")
|
391 |
+
|
392 |
+
if comparison_option == "Upload new documents":
|
393 |
+
comparison_files = st.file_uploader("Upload comparison documents", type="pdf", accept_multiple_files=True, key="comparison_files")
|
394 |
+
comparison_inputs = comparison_files
|
395 |
+
else:
|
396 |
+
# Select comparison documents from existing vector stores
|
397 |
+
selected_comparison_plans = st.multiselect("Select comparison documents:", vectorstore_documents, key="select_comparison_plans")
|
398 |
+
comparison_inputs = [os.path.join("Individual_All_Vectorstores", f"{doc}_vectorstore") for doc in selected_comparison_plans]
|
399 |
+
|
400 |
+
input_text = st.text_input("Ask a comparison question:", key="comparison_input")
|
401 |
+
|
402 |
+
if st.button("Compare", key="compare_button") and api_key and input_text and focus_input and comparison_inputs:
|
403 |
+
display_placeholder4 = st.empty()
|
404 |
+
with st.spinner("Processing..."):
|
405 |
+
try:
|
406 |
+
# Call the process_one_to_many_query function
|
407 |
+
process_one_to_many_query(api_key, focus_input, comparison_inputs, input_text, display_placeholder4)
|
408 |
+
|
409 |
+
except Exception as e:
|
410 |
+
st.error(f"An error occurred: {e}")
|
411 |
+
|
412 |
+
# Fifth tab: Plan Comparison with Long Context Model
|
413 |
+
with tab5:
|
414 |
+
st.header("Plan Comparison with Long Context Model")
|
415 |
+
|
416 |
+
# Anthropics API Key Input
|
417 |
+
anthropic_api_key = st.text_input("Enter your Anthropic API key:", type="password", key="anthropic_key")
|
418 |
+
|
419 |
+
# Option to upload a new plan or select from a list
|
420 |
+
upload_option = st.radio("Choose a focus plan:", ("Select from existing plans", "Upload a new plan"), key="upload_option_long_context")
|
421 |
+
|
422 |
+
if upload_option == "Upload a new plan":
|
423 |
+
focus_uploaded_file = st.file_uploader("Upload a Climate Action Plan to compare", type="pdf", key="focus_upload_long_context")
|
424 |
+
focus_city_name = st.text_input("Enter the city name for the uploaded plan:", key="focus_city_name_long_context")
|
425 |
+
if focus_uploaded_file is not None and focus_city_name:
|
426 |
+
# Save uploaded file temporarily
|
427 |
+
with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
|
428 |
+
temp_pdf.write(focus_uploaded_file.read())
|
429 |
+
focus_plan_path = temp_pdf.name
|
430 |
+
else:
|
431 |
+
focus_plan_path = None
|
432 |
+
else:
|
433 |
+
# List of existing plans in CAPS
|
434 |
+
plan_list = [f.replace(".pdf", "") for f in os.listdir("CAPS") if f.endswith('.pdf')]
|
435 |
+
selected_plan = st.selectbox("Select a plan:", plan_list, key="selected_plan_long_context")
|
436 |
+
focus_plan_path = os.path.join("CAPS", selected_plan)
|
437 |
+
# Extract city name from the file name
|
438 |
+
focus_city_name = os.path.splitext(selected_plan)[0].replace("_", " ")
|
439 |
+
|
440 |
+
# List available summary documents for selection
|
441 |
+
summaries_directory = "CAPS_Summaries"
|
442 |
+
summary_files = [f.replace(".md", "").replace("_", " ") for f in os.listdir(summaries_directory) if f.endswith('.md')]
|
443 |
+
selected_summaries = st.multiselect("Select summary documents for comparison:", summary_files, key="selected_summaries")
|
444 |
+
|
445 |
+
input_text = st.text_input("Ask a comparison question:", key="comparison_input_long_context")
|
446 |
+
|
447 |
+
if st.button("Compare with Long Context", key="compare_button_long_context") and api_key and anthropic_api_key and input_text and focus_plan_path and focus_city_name:
|
448 |
+
display_placeholder = st.empty()
|
449 |
+
with st.spinner("Processing..."):
|
450 |
+
try:
|
451 |
+
compare_with_long_context(api_key, anthropic_api_key, input_text, focus_plan_path, focus_city_name, selected_summaries, display_placeholder)
|
452 |
+
except Exception as e:
|
453 |
+
st.error(f"An error occurred: {e}")
|
batch_summary_generation.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from tempfile import NamedTemporaryFile
|
3 |
+
from langchain.chains import create_retrieval_chain
|
4 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
5 |
+
from langchain_core.prompts import ChatPromptTemplate
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
+
from langchain_community.document_loaders import PyPDFLoader
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain_openai import OpenAIEmbeddings
|
10 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
11 |
+
|
12 |
+
def process_pdf(api_key, pdf_path, questions_path, prompt_path):
|
13 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
14 |
+
|
15 |
+
with open(pdf_path, "rb") as file:
|
16 |
+
with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
|
17 |
+
temp_pdf.write(file.read())
|
18 |
+
temp_pdf_path = temp_pdf.name
|
19 |
+
|
20 |
+
loader = PyPDFLoader(temp_pdf_path)
|
21 |
+
docs = loader.load()
|
22 |
+
|
23 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=500)
|
24 |
+
splits = text_splitter.split_documents(docs)
|
25 |
+
|
26 |
+
vectorstore = FAISS.from_documents(
|
27 |
+
documents=splits, embedding=OpenAIEmbeddings(model="text-embedding-3-large")
|
28 |
+
)
|
29 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 10})
|
30 |
+
|
31 |
+
if os.path.exists(prompt_path):
|
32 |
+
with open(prompt_path, "r") as file:
|
33 |
+
system_prompt = file.read()
|
34 |
+
else:
|
35 |
+
raise FileNotFoundError(f"The specified file was not found: {prompt_path}")
|
36 |
+
|
37 |
+
prompt = ChatPromptTemplate.from_messages(
|
38 |
+
[
|
39 |
+
("system", system_prompt),
|
40 |
+
("human", "{input}"),
|
41 |
+
]
|
42 |
+
)
|
43 |
+
|
44 |
+
llm = ChatOpenAI(model="gpt-4o")
|
45 |
+
question_answer_chain = create_stuff_documents_chain(llm, prompt, document_variable_name="context")
|
46 |
+
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
47 |
+
|
48 |
+
if os.path.exists(questions_path):
|
49 |
+
with open(questions_path, "r") as file:
|
50 |
+
questions = [line.strip() for line in file.readlines() if line.strip()]
|
51 |
+
else:
|
52 |
+
raise FileNotFoundError(f"The specified file was not found: {questions_path}")
|
53 |
+
|
54 |
+
qa_results = []
|
55 |
+
for question in questions:
|
56 |
+
result = rag_chain.invoke({"input": question})
|
57 |
+
answer = result["answer"]
|
58 |
+
|
59 |
+
qa_text = f"### Question: {question}\n**Answer:**\n{answer}\n"
|
60 |
+
qa_results.append(qa_text)
|
61 |
+
|
62 |
+
os.remove(temp_pdf_path)
|
63 |
+
|
64 |
+
return qa_results
|
65 |
+
|
66 |
+
def main():
|
67 |
+
# Get user input for directory path and API key
|
68 |
+
directory_path = input("Enter the path to the folder containing the PDF plans: ").strip()
|
69 |
+
api_key = input("Enter your OpenAI API key: ").strip()
|
70 |
+
|
71 |
+
# Paths for prompt and questions files
|
72 |
+
prompt_file_path = "summary_tool_system_prompt.md"
|
73 |
+
questions_file_path = "summary_tool_questions.md"
|
74 |
+
|
75 |
+
# Create output directory if it doesn't exist
|
76 |
+
output_directory = "CAPS_Summaries"
|
77 |
+
os.makedirs(output_directory, exist_ok=True)
|
78 |
+
|
79 |
+
# Process each PDF in the directory
|
80 |
+
for filename in os.listdir(directory_path):
|
81 |
+
if filename.endswith(".pdf"):
|
82 |
+
pdf_path = os.path.join(directory_path, filename)
|
83 |
+
print(f"Processing {filename}...")
|
84 |
+
|
85 |
+
try:
|
86 |
+
results = process_pdf(api_key, pdf_path, questions_file_path, prompt_file_path)
|
87 |
+
markdown_text = "\n".join(results)
|
88 |
+
|
89 |
+
# Save the results to a Markdown file
|
90 |
+
base_name = os.path.splitext(filename)[0]
|
91 |
+
output_file_path = os.path.join(output_directory, f"{base_name}_Summary.md")
|
92 |
+
with open(output_file_path, "w") as output_file:
|
93 |
+
output_file.write(markdown_text)
|
94 |
+
|
95 |
+
print(f"Summary for {filename} saved to {output_file_path}")
|
96 |
+
except Exception as e:
|
97 |
+
print(f"An error occurred while processing {filename}: {e}")
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
main()
|