import streamlit as st st.markdown("""### TL;DR: give me the keywords! Here you can get the keywords and topic of the article based on it's title or abstract. The only supported language is English.""") st.markdown("

", unsafe_allow_html=True) #from transformers import pipeline #pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl") #st.markdown("#### Title:") title = st.text_area("Title:") abstract = st.text_area("abstract:") from transformers import AutoModel, AutoTokenizer #from tqdm import tqdm as tqdm import transformers transformers.utils.logging.disable_progress_bar() model_name = "distilroberta-base" main_model = AutoModel.from_pretrained(model_name) main_tokenizer = AutoTokenizer.from_pretrained(model_name) from utils.utils import * import spacy #import en_core_web_sm import os os.system("python3 -m spacy download en") # Вообще, стоит найти pipeline, заточенный под научный текст. # Но этим займёмся потом, если будет время. main_nlp = spacy.load('en_core_web_sm') text = title + abstract if not text is None and len(text) > 0: #keywords = get_candidates(text, main_nlp) keywords = get_keywords(summaries[0], main_nlp, main_model, main_tokenizer) st.markdown(f"{keywords}") else: st.markdown("Please, try to enter something.")