File size: 977 Bytes
416fd50
 
0aaac91
 
 
 
 
 
 
 
 
b4c09b1
 
 
 
7b3007d
0aaac91
b4c09b1
 
 
 
 
416fd50
b4c09b1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os

# Check if the token is being accessed
hf_token = os.getenv("HF_HOME")
if hf_token:
    print("Successfully retrieved Hugging Face token.")
else:
    print("Failed to retrieve Hugging Face token.")

# # Load the model and tokenizer
# model_name = "meta-llama/CodeLlama-7b-hf"
# model = AutoModelForCausalLM.from_pretrained(model_name)
# tokenizer = AutoTokenizer.from_pretrained(model_name)


# def generate_code(prompt):
#     inputs = tokenizer(prompt, return_tensors="pt")
#     outputs = model.generate(inputs["input_ids"], max_length=200)
#     code = tokenizer.decode(outputs[0], skip_special_tokens=True)
#     return code

# # Set up the Gradio interface
# demo = gr.Interface(fn=generate_code, 
#              inputs="text", 
#              outputs="text", 
#              title="CodeLlama 7B Model",
#              description="Generate code with CodeLlama-7b-hf.").launch()